Planar polarized force propagation integrates cell behavior with tissue shaping during convergent extension.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shinuo Weng, Masaya Hayashi, Yasuhiro Inoue, John B Wallingford
{"title":"Planar polarized force propagation integrates cell behavior with tissue shaping during convergent extension.","authors":"Shinuo Weng, Masaya Hayashi, Yasuhiro Inoue, John B Wallingford","doi":"10.1016/j.cub.2024.10.070","DOIUrl":null,"url":null,"abstract":"<p><p>Convergent extension (CE) is an evolutionarily conserved developmental process that elongates tissues and organs via collective cell movements known as cell intercalation. Here, we sought to understand the mechanisms connecting cell behaviors and tissue shaping. We focus on an often-overlooked aspect of cell intercalation, the resolution of 4-cell vertices. Our data reveal that imbalanced cellular forces are involved in a timely vertex resolution, which, in turn, enables the propagation of such cellular forces, facilitating the propagation of tissue-scale CE. Conversely, delayed vertex resolution leads to a subtle but significant change in tissue-wide cell packing and exerts a profound impact by blocking force propagation, resulting in CE propagation defects. Our findings propose a collaborative nature of local cell intercalations in propagating tissue-wide CE. It unveils a multiscale biomechanical synergy underpinning the cellular mechanisms that orchestrate tissue morphogenesis during CE.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.10.070","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Convergent extension (CE) is an evolutionarily conserved developmental process that elongates tissues and organs via collective cell movements known as cell intercalation. Here, we sought to understand the mechanisms connecting cell behaviors and tissue shaping. We focus on an often-overlooked aspect of cell intercalation, the resolution of 4-cell vertices. Our data reveal that imbalanced cellular forces are involved in a timely vertex resolution, which, in turn, enables the propagation of such cellular forces, facilitating the propagation of tissue-scale CE. Conversely, delayed vertex resolution leads to a subtle but significant change in tissue-wide cell packing and exerts a profound impact by blocking force propagation, resulting in CE propagation defects. Our findings propose a collaborative nature of local cell intercalations in propagating tissue-wide CE. It unveils a multiscale biomechanical synergy underpinning the cellular mechanisms that orchestrate tissue morphogenesis during CE.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信