Pseudomonas chlororaphis ZH2: Evaluation of the Biocontrol Potential of Continuous Cropping Obstacles on the Basis of Genome Analysis, Autotoxic Substance Degradation and In Vitro Antifungal Activity.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Rong Xiao, Chunfen Zhang, Shu Deng, Ciqiong Niu, Quan Li, Junjie Sun, Juantao Liu, Jianping Wang
{"title":"Pseudomonas chlororaphis ZH2: Evaluation of the Biocontrol Potential of Continuous Cropping Obstacles on the Basis of Genome Analysis, Autotoxic Substance Degradation and In Vitro Antifungal Activity.","authors":"Rong Xiao, Chunfen Zhang, Shu Deng, Ciqiong Niu, Quan Li, Junjie Sun, Juantao Liu, Jianping Wang","doi":"10.1007/s00284-024-03998-x","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of autotoxic substances and fungal pathogens in soil are the two leading causes of continuous cropping obstacles. In this context, the use of beneficial strains for the biological control of continuous cropping obstacles is a promising research direction. In this work, the functions of Pseudomonas chlororaphis ZH2 in antagonizing pathogenic fungi and degrading autotoxic substances during continuous cropping were studied via genome-wide sequence analysis, antifungal activity in vitro, and autotoxic substances degrading tests. The results revealed that the genome of ZH2 contains 7,249,755 base pairs, has a GC content of 62.61%, and is predicted to contain 6551 genes. The phylogenetic results of 16S rRNA, atpD, recA, and carA gene analysis and the average nucleotide identity analysis revealed that ZH2 belongs to P. chlororaphis subsp. aurantiaca. KEGG analysis revealed that some genes of ZH2 were annotated to the biodegradation pathway of benzoate, p-hydroxybenzoic acid, and other autotoxic substances. Nineteen types of secondary metabolite biosynthesis-related gene clusters were predicted to exist in ZH2 via antiSMASH software, and it is predicted that ZH2 can produce a variety of secondary metabolites with antifungal and siderophore functions. The autotoxic substance degradation tests confirmed that ZH2 can degrade benzoate, p-hydroxybenzoic acid, vanillin, and vanillic acid, and the antagonism tests confirmed that ZH2 can inhibit the growth of pathogenic fungi such as Fusarium solani, Rhizopus oryzea, Pestalotiopsis mangiferae, Fusarium oxysporum f.sp. cucumerinum and Botryosphaeria dothidea. These results show that ZH2 degrades autotoxic substances and antagonizes pathogens. Therefore, it is a promising strain that can be used for the biological control of continuous cropping obstacles.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"21"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03998-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of autotoxic substances and fungal pathogens in soil are the two leading causes of continuous cropping obstacles. In this context, the use of beneficial strains for the biological control of continuous cropping obstacles is a promising research direction. In this work, the functions of Pseudomonas chlororaphis ZH2 in antagonizing pathogenic fungi and degrading autotoxic substances during continuous cropping were studied via genome-wide sequence analysis, antifungal activity in vitro, and autotoxic substances degrading tests. The results revealed that the genome of ZH2 contains 7,249,755 base pairs, has a GC content of 62.61%, and is predicted to contain 6551 genes. The phylogenetic results of 16S rRNA, atpD, recA, and carA gene analysis and the average nucleotide identity analysis revealed that ZH2 belongs to P. chlororaphis subsp. aurantiaca. KEGG analysis revealed that some genes of ZH2 were annotated to the biodegradation pathway of benzoate, p-hydroxybenzoic acid, and other autotoxic substances. Nineteen types of secondary metabolite biosynthesis-related gene clusters were predicted to exist in ZH2 via antiSMASH software, and it is predicted that ZH2 can produce a variety of secondary metabolites with antifungal and siderophore functions. The autotoxic substance degradation tests confirmed that ZH2 can degrade benzoate, p-hydroxybenzoic acid, vanillin, and vanillic acid, and the antagonism tests confirmed that ZH2 can inhibit the growth of pathogenic fungi such as Fusarium solani, Rhizopus oryzea, Pestalotiopsis mangiferae, Fusarium oxysporum f.sp. cucumerinum and Botryosphaeria dothidea. These results show that ZH2 degrades autotoxic substances and antagonizes pathogens. Therefore, it is a promising strain that can be used for the biological control of continuous cropping obstacles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信