Mechanisms Underlying the Therapeutic Effects of Yiqi Wenyang Huwei Decoction in Treating Asthma Based on GEO Datasets, Network Pharmacology, Experimental Validation, and Molecular Docking.
{"title":"Mechanisms Underlying the Therapeutic Effects of Yiqi Wenyang Huwei Decoction in Treating Asthma Based on GEO Datasets, Network Pharmacology, Experimental Validation, and Molecular Docking.","authors":"Shuangdi Xiang, Yujiao Lu, Linhui Cheng, Hanrong Xue","doi":"10.2174/0113862073293081240606111739","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The Yiqi Wenyang Huwei Decoction (YWHD) is an herbal formula frequently utilized to treat asthma. Despite its wide usage, the specific mechanism of action remains unknown. Through an in-depth investigation utilizing network pharmacology, molecular docking techniques, and experimental validation, this study aims to uncover the molecular mechanism and material basis of YWHD in the treatment of asthma.</p><p><strong>Methods: </strong>The compounds and targets of YWHD were gathered from various databases such as TCMSP, PubMed, and CNKI. Additionally, asthma-related targets were obtained by combining the GEO dataset with GeneCards and OMIM databases. The STRING platform was employed to establish protein-protein interactions. GO and KEGG pathway enrichment analyses were conducted using DAVID. Molecular docking was utilized to assess the binding affinity between potential targets and active compounds. The asthma rat model was established through OVA induction, and a lung function meter was used to detect Mch-induced Max Rrs. HE staining was conducted to observe pathological changes, while ELISA was used to detect levels of inflammatory factors IL4, IL6, IL13, and IgE in BLAF. Furthermore, qPCR was used to detect levels of IL-1β, IL-6, JUN, and PTGS2 mRNA, while Western blot assay was employed to measure phosphorylation levels of NF-κB and IKKα.</p><p><strong>Results: </strong>A comprehensive study revealed that YWHD has 188 active compounds and 250 corresponding targets. After conducting a topological analysis of the PPI network, the study identified 14 high-activity targets, including JUN, PTGS2, IL6, IL1B, CXCL8, MMP9, IL10, ALB, TGFB1, CCL2, IFNG, IL4, MAPK3, and STAT3. Further, GO and KEGG pathway enrichment analysis indicated that YWHD targets inflammation-related genes and regulates IL- 17 and NF-kappa B signaling pathways. Animal studies have shown that YWHD can effectively minimize airway Max Rrs, reduce the levels of inflammatory factors IL4, IL13, IL6, and IgE in BLAF, and improve airway inflammation in rats with asthma. Molecular experiments have also demonstrated that YWHD achieves this by down-regulating the expression levels of IL-1β, IL-6, JUN, and PTGS2 mRNA, inhibiting the phosphorylation modification levels of NF-κB and IKKα, and reducing the levels of inflammatory cytokines IL4, IL13, IL6, and IgE in BALF of rats. Interestingly, molecular docking has revealed that the active compounds in YWHD have a strong binding ability to the screening targets.</p><p><strong>Conclusion: </strong>This research endeavor systematically explicated the active constituents, prospective targets, and signaling pathways of YWHD for asthmatic intervention. The study provides an innovative notion and dependable resource for comprehending the molecular mechanism and pharmaceutical screening of YWHD in the context of asthma treatment.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073293081240606111739","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The Yiqi Wenyang Huwei Decoction (YWHD) is an herbal formula frequently utilized to treat asthma. Despite its wide usage, the specific mechanism of action remains unknown. Through an in-depth investigation utilizing network pharmacology, molecular docking techniques, and experimental validation, this study aims to uncover the molecular mechanism and material basis of YWHD in the treatment of asthma.
Methods: The compounds and targets of YWHD were gathered from various databases such as TCMSP, PubMed, and CNKI. Additionally, asthma-related targets were obtained by combining the GEO dataset with GeneCards and OMIM databases. The STRING platform was employed to establish protein-protein interactions. GO and KEGG pathway enrichment analyses were conducted using DAVID. Molecular docking was utilized to assess the binding affinity between potential targets and active compounds. The asthma rat model was established through OVA induction, and a lung function meter was used to detect Mch-induced Max Rrs. HE staining was conducted to observe pathological changes, while ELISA was used to detect levels of inflammatory factors IL4, IL6, IL13, and IgE in BLAF. Furthermore, qPCR was used to detect levels of IL-1β, IL-6, JUN, and PTGS2 mRNA, while Western blot assay was employed to measure phosphorylation levels of NF-κB and IKKα.
Results: A comprehensive study revealed that YWHD has 188 active compounds and 250 corresponding targets. After conducting a topological analysis of the PPI network, the study identified 14 high-activity targets, including JUN, PTGS2, IL6, IL1B, CXCL8, MMP9, IL10, ALB, TGFB1, CCL2, IFNG, IL4, MAPK3, and STAT3. Further, GO and KEGG pathway enrichment analysis indicated that YWHD targets inflammation-related genes and regulates IL- 17 and NF-kappa B signaling pathways. Animal studies have shown that YWHD can effectively minimize airway Max Rrs, reduce the levels of inflammatory factors IL4, IL13, IL6, and IgE in BLAF, and improve airway inflammation in rats with asthma. Molecular experiments have also demonstrated that YWHD achieves this by down-regulating the expression levels of IL-1β, IL-6, JUN, and PTGS2 mRNA, inhibiting the phosphorylation modification levels of NF-κB and IKKα, and reducing the levels of inflammatory cytokines IL4, IL13, IL6, and IgE in BALF of rats. Interestingly, molecular docking has revealed that the active compounds in YWHD have a strong binding ability to the screening targets.
Conclusion: This research endeavor systematically explicated the active constituents, prospective targets, and signaling pathways of YWHD for asthmatic intervention. The study provides an innovative notion and dependable resource for comprehending the molecular mechanism and pharmaceutical screening of YWHD in the context of asthma treatment.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.