Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca2+ channel may modulate its β-adrenergic regulation.

IF 4.4 1区 生物学 Q1 BIOLOGY
Shimrit Oz, Tal Keren-Raifman, Tom Sharon, Suraj Subramaniam, Tamara Pallien, Moshe Katz, Vladimir Tsemakhovich, Anastasiia Sholokh, Baraa Watad, Debi Ranjan Tripathy, Giorgia Sasson, Orna Chomsky-Hecht, Leonid Vysochek, Maike Schulz-Christian, Claudia Fecher-Trost, Kerstin Zühlke, Daniela Bertinetti, Friedrich W Herberg, Veit Flockerzi, Joel A Hirsch, Enno Klussmann, Sharon Weiss, Nathan Dascal
{"title":"Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca<sup>2+</sup> channel may modulate its β-adrenergic regulation.","authors":"Shimrit Oz, Tal Keren-Raifman, Tom Sharon, Suraj Subramaniam, Tamara Pallien, Moshe Katz, Vladimir Tsemakhovich, Anastasiia Sholokh, Baraa Watad, Debi Ranjan Tripathy, Giorgia Sasson, Orna Chomsky-Hecht, Leonid Vysochek, Maike Schulz-Christian, Claudia Fecher-Trost, Kerstin Zühlke, Daniela Bertinetti, Friedrich W Herberg, Veit Flockerzi, Joel A Hirsch, Enno Klussmann, Sharon Weiss, Nathan Dascal","doi":"10.1186/s12915-024-02076-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated Ca<sub>V</sub>1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca<sup>2+</sup> influx. In cardiomyocytes, the core subunit of Ca<sub>V</sub>1.2, Ca<sub>V</sub>1.2α<sub>1</sub>, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to Ca<sub>V</sub>1.2α<sub>1</sub> by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of Ca<sub>V</sub>1.2 in heterologous models, and their role in cardiomyocytes also remains unclear.</p><p><strong>Results: </strong>We show that PKAC interacts with Ca<sub>V</sub>1.2α<sub>1</sub> in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in Ca<sub>V</sub>1.2α<sub>1</sub>-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of Ca<sub>V</sub>1.2α<sub>1</sub> lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte.</p><p><strong>Conclusions: </strong>We discover direct interactions between PKAC and two domains in Ca<sub>V</sub>1.2α<sub>1</sub>. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"276"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02076-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear.

Results: We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte.

Conclusions: We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信