{"title":"UnionCAM: enhancing CNN interpretability through denoising, weighted fusion, and selective high-quality class activation mapping.","authors":"Hao Hu, Rui Wang, Hao Lin, Huai Yu","doi":"10.3389/fnbot.2024.1490198","DOIUrl":null,"url":null,"abstract":"<p><p>Deep convolutional neural networks (CNNs) have achieved remarkable success in various computer vision tasks. However, the lack of interpretability in these models has raised concerns and hindered their widespread adoption in critical domains. Generating activation maps that highlight the regions contributing to the CNN's decision has emerged as a popular approach to visualize and interpret these models. Nevertheless, existing methods often produce activation maps contaminated with irrelevant background noise or incomplete object activation, limiting their effectiveness in providing meaningful explanations. To address this challenge, we propose Union Class Activation Mapping (UnionCAM), an innovative visual interpretation framework that generates high-quality class activation maps (CAMs) through a novel three-step approach. UnionCAM introduces a weighted fusion strategy that adaptively combines multiple CAMs to create more informative and comprehensive activation maps. First, the denoising module removes background noise from CAMs by using adaptive thresholding. Subsequently, the union module fuses the denoised CAMs with region-based CAMs using a weighted combination scheme to obtain more comprehensive and informative maps, which we refer to as fused CAMs. Lastly, the activation map selection module automatically selects the optimal CAM that offers the best interpretation from the pool of fused CAMs. Extensive experiments on ILSVRC2012 and VOC2007 datasets demonstrate UnionCAM's superior performance over state-of-the-art methods. It effectively suppresses background noise, captures complete object regions, and provides intuitive visual explanations. UnionCAM achieves significant improvements in insertion and deletion scores, outperforming the best baseline. UnionCAM makes notable contributions by introducing a novel denoising strategy, adaptive fusion of CAMs, and an automatic selection mechanism. It bridges the gap between CNN performance and interpretability, providing a valuable tool for understanding and trusting CNN-based systems. UnionCAM has the potential to foster responsible deployment of CNNs in real-world applications.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1490198"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1490198","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep convolutional neural networks (CNNs) have achieved remarkable success in various computer vision tasks. However, the lack of interpretability in these models has raised concerns and hindered their widespread adoption in critical domains. Generating activation maps that highlight the regions contributing to the CNN's decision has emerged as a popular approach to visualize and interpret these models. Nevertheless, existing methods often produce activation maps contaminated with irrelevant background noise or incomplete object activation, limiting their effectiveness in providing meaningful explanations. To address this challenge, we propose Union Class Activation Mapping (UnionCAM), an innovative visual interpretation framework that generates high-quality class activation maps (CAMs) through a novel three-step approach. UnionCAM introduces a weighted fusion strategy that adaptively combines multiple CAMs to create more informative and comprehensive activation maps. First, the denoising module removes background noise from CAMs by using adaptive thresholding. Subsequently, the union module fuses the denoised CAMs with region-based CAMs using a weighted combination scheme to obtain more comprehensive and informative maps, which we refer to as fused CAMs. Lastly, the activation map selection module automatically selects the optimal CAM that offers the best interpretation from the pool of fused CAMs. Extensive experiments on ILSVRC2012 and VOC2007 datasets demonstrate UnionCAM's superior performance over state-of-the-art methods. It effectively suppresses background noise, captures complete object regions, and provides intuitive visual explanations. UnionCAM achieves significant improvements in insertion and deletion scores, outperforming the best baseline. UnionCAM makes notable contributions by introducing a novel denoising strategy, adaptive fusion of CAMs, and an automatic selection mechanism. It bridges the gap between CNN performance and interpretability, providing a valuable tool for understanding and trusting CNN-based systems. UnionCAM has the potential to foster responsible deployment of CNNs in real-world applications.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.