Shuang-Lin Zou, Ling-Ping Xiao, Wen-Zheng Yin, Tao Gui, Run-Cang Sun
{"title":"Fabrication of biodegradable polyvinyl alcohol-based plastics toward technical lignin valorization.","authors":"Shuang-Lin Zou, Ling-Ping Xiao, Wen-Zheng Yin, Tao Gui, Run-Cang Sun","doi":"10.1016/j.ijbiomac.2024.138123","DOIUrl":null,"url":null,"abstract":"<p><p>The fabrication of composite materials from lignin has attracted increasing attention to reducing the dependence of petrochemical-based resources on carbon neutrality. However, the low content of lignin in the biocomposites remains a challenge. Herein, industrial lignin is fractionated by an organic solvent to reduce its structural heterogeneity. Subsequently, the fractionated lignin samples are integrated with polyvinyl alcohol (PVA) to fabricate plastics characterized by uniform thickness and smooth surfaces. The resultant composite films exhibit tensile strength and strain up to 75 MPa and 1050%, respectively, which surpass state-of-the-art lignin-based bioplastics. The mechanism investigations reveal that the enhanced mechanical properties are due to the internal non-covalent interactions derived from the hydroxyl groups of lignin and PVA. Notably, the PVA/lignin films are biodegradable after 92 days' burial in soil. This study paves the way for the rational design of lignin-based biodegradable polymers as sustainable alternatives to conventional plastics.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138123"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fabrication of composite materials from lignin has attracted increasing attention to reducing the dependence of petrochemical-based resources on carbon neutrality. However, the low content of lignin in the biocomposites remains a challenge. Herein, industrial lignin is fractionated by an organic solvent to reduce its structural heterogeneity. Subsequently, the fractionated lignin samples are integrated with polyvinyl alcohol (PVA) to fabricate plastics characterized by uniform thickness and smooth surfaces. The resultant composite films exhibit tensile strength and strain up to 75 MPa and 1050%, respectively, which surpass state-of-the-art lignin-based bioplastics. The mechanism investigations reveal that the enhanced mechanical properties are due to the internal non-covalent interactions derived from the hydroxyl groups of lignin and PVA. Notably, the PVA/lignin films are biodegradable after 92 days' burial in soil. This study paves the way for the rational design of lignin-based biodegradable polymers as sustainable alternatives to conventional plastics.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.