Unveiling the structural and functional perspectives of a bifunctional α-l-arabinofuranosidase/endo-β-1,4-xylanase (BoGH43_35) from Bacteroides ovatus

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Madhulika Shrivastava, Arun Goyal
{"title":"Unveiling the structural and functional perspectives of a bifunctional α-l-arabinofuranosidase/endo-β-1,4-xylanase (BoGH43_35) from Bacteroides ovatus","authors":"Madhulika Shrivastava,&nbsp;Arun Goyal","doi":"10.1016/j.abb.2024.110232","DOIUrl":null,"url":null,"abstract":"<div><div>Arabinoxylan, a complex hemicellulose, can be degraded to its constituent sugars by concerted action of hemicellulases like α-<span>l</span>-arabinofuranosidase, endo-β-1,4-xylanase and xylosidase. In this study, a novel bifunctional α-<span>l</span>-arabinofuranosidase/endo-β-1,4-xylanase (<em>Bo</em>GH43_35) of glycoside hydrolase family 43 subfamily 35 from <em>Bacteroides ovatus</em> was characterized by computational and experimental approaches. Sequence analysis identified Asp34 and Glu251 as the conserved catalytic residues. Structure analysis of <em>Bo</em>GH43_35 disclosed 5-bladed β-propeller fold adopted by the N-terminal GH43 catalytic module followed by two independently folded carbohydrate-binding modules family 6 (CBM6A and CBM6B), displaying jellyroll type β-sandwich fold. Molecular Dynamics simulation of <em>Bo</em>GH43_35 for 200 ns showed RMSD 0.35 nm, confirming structural stability and compactness of modeled structure. Molecular docking of <em>Bo</em>GH43_35 with arabino-xylooligosaccharides and xylooligosaccharides by using AutoDock 4.2.7 demonstrated most favourable binding with arabinose (−5.01 kcal/mol) followed by arabinoxylobiose (−4.35 kcal/mol), xylotriose (−4.65 kcal/mol), xylotetraose (−4.18 kcal/mol) and xylobiose (−3.66 kcal/mol) showing affinity with both types of oligosaccharides. RMSD value of <em>Bo</em>GH43_35-arabinose complex decreased to 0.28 nm upon MD simulation from 0.35 nm for only <em>Bo</em>GH43_35, indicating stability of enzyme-substrate complex throughout the trajectory. The binding analysis of <em>Bo</em>GH43_35 with wheat arabinoxylan by fluorescence spectroscopy gave <em>K</em><sub><em>a</em></sub>, 3.1 × 10<sup>2</sup> M<sup>−1</sup>, ΔG -14.2 kJ mole<sup>−1</sup> and number of binding sites 2.2. Dynamic light scattering of <em>Bo</em>GH43_35 showed hydrodynamic radius (<em>R</em><sub><em>h</em></sub>) of 4.0 nm, slightly higher than the radius of gyration (2.69 nm) from MD simulation. Additionally, zeta potential measurements (−9.3 mV at 0.5 mg/mL and −9.4 mV at 1.0 mg/mL) denoted its fair resistance towards aggregation in aqueous solution.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"764 ","pages":"Article 110232"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124003540","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arabinoxylan, a complex hemicellulose, can be degraded to its constituent sugars by concerted action of hemicellulases like α-l-arabinofuranosidase, endo-β-1,4-xylanase and xylosidase. In this study, a novel bifunctional α-l-arabinofuranosidase/endo-β-1,4-xylanase (BoGH43_35) of glycoside hydrolase family 43 subfamily 35 from Bacteroides ovatus was characterized by computational and experimental approaches. Sequence analysis identified Asp34 and Glu251 as the conserved catalytic residues. Structure analysis of BoGH43_35 disclosed 5-bladed β-propeller fold adopted by the N-terminal GH43 catalytic module followed by two independently folded carbohydrate-binding modules family 6 (CBM6A and CBM6B), displaying jellyroll type β-sandwich fold. Molecular Dynamics simulation of BoGH43_35 for 200 ns showed RMSD 0.35 nm, confirming structural stability and compactness of modeled structure. Molecular docking of BoGH43_35 with arabino-xylooligosaccharides and xylooligosaccharides by using AutoDock 4.2.7 demonstrated most favourable binding with arabinose (−5.01 kcal/mol) followed by arabinoxylobiose (−4.35 kcal/mol), xylotriose (−4.65 kcal/mol), xylotetraose (−4.18 kcal/mol) and xylobiose (−3.66 kcal/mol) showing affinity with both types of oligosaccharides. RMSD value of BoGH43_35-arabinose complex decreased to 0.28 nm upon MD simulation from 0.35 nm for only BoGH43_35, indicating stability of enzyme-substrate complex throughout the trajectory. The binding analysis of BoGH43_35 with wheat arabinoxylan by fluorescence spectroscopy gave Ka, 3.1 × 102 M−1, ΔG -14.2 kJ mole−1 and number of binding sites 2.2. Dynamic light scattering of BoGH43_35 showed hydrodynamic radius (Rh) of 4.0 nm, slightly higher than the radius of gyration (2.69 nm) from MD simulation. Additionally, zeta potential measurements (−9.3 mV at 0.5 mg/mL and −9.4 mV at 1.0 mg/mL) denoted its fair resistance towards aggregation in aqueous solution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信