{"title":"Emerging advances in biosensor technologies for quorum sensing signal molecules.","authors":"Xi Chen, Chen Wang, Qing Yin Zheng, Wen-Chao Hu, Xing-Hua Xia","doi":"10.1007/s00216-024-05659-1","DOIUrl":null,"url":null,"abstract":"<p><p>Quorum sensing is a physiological phenomenon of microbial cell-to-cell information exchange, which relies on the quorum sensing signal molecules (QSSMs) to communicate and coordinate collective processes. Quorum sensing enables bacteria to alter their behavior as the population density and species composition of the bacterial community change. Effective detection of QSSMs is paramount for regulating microbial community behavior. However, traditional detection methods face the shortcomings of complex operation, high costs, and lack of portability. By combining the advantage of biosensing and nanomaterials, the biosensors play a pivotal significance in QSSM detection. In this review, we first briefly describe the QSSM classification and common detection techniques. Then, we provide a comprehensive summary of research progress in biosensor-based QSSM detection according to the transduction mechanism. Finally, challenges and development trends of biosensors for QSSM detection are discussed. We believe it offers valuable insights into this burgeoning research area.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05659-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Quorum sensing is a physiological phenomenon of microbial cell-to-cell information exchange, which relies on the quorum sensing signal molecules (QSSMs) to communicate and coordinate collective processes. Quorum sensing enables bacteria to alter their behavior as the population density and species composition of the bacterial community change. Effective detection of QSSMs is paramount for regulating microbial community behavior. However, traditional detection methods face the shortcomings of complex operation, high costs, and lack of portability. By combining the advantage of biosensing and nanomaterials, the biosensors play a pivotal significance in QSSM detection. In this review, we first briefly describe the QSSM classification and common detection techniques. Then, we provide a comprehensive summary of research progress in biosensor-based QSSM detection according to the transduction mechanism. Finally, challenges and development trends of biosensors for QSSM detection are discussed. We believe it offers valuable insights into this burgeoning research area.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.