Characterization and antimicrobial resistance of Staphylococcus hyicus from swine exudative epidermitis in South Korea.

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES
Chi Sun Yun, Su-Min Kang, Dong Hyeon Kwon, Sanghyub Lee, Gyu-Tae Jeon, Hye Jeong Kang, Jongho Kim, Jae-Won Byun, Bok-Kyung Ku, Mi-Hye Hwang, Ha-Young Kim
{"title":"Characterization and antimicrobial resistance of Staphylococcus hyicus from swine exudative epidermitis in South Korea.","authors":"Chi Sun Yun, Su-Min Kang, Dong Hyeon Kwon, Sanghyub Lee, Gyu-Tae Jeon, Hye Jeong Kang, Jongho Kim, Jae-Won Byun, Bok-Kyung Ku, Mi-Hye Hwang, Ha-Young Kim","doi":"10.1186/s12917-024-04396-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Staphylococcus hyicus causes porcine exudative epidermitis, predominantly affecting suckling and weaned piglets. This bacterium produces various exfoliative toxins (ExhA, ExhB, ExhC, ExhD, SHETA, and SHETB), which are responsible for the clinical manifestations of exudative epidermitis. However, treatment failure is common due to frequent antimicrobial resistance in porcine strains. Therefore, this study aimed to identify the genes encoding exfoliative toxins and assess the antimicrobial resistance profiles of S. hyicus. A total of 17 S. hyicus isolates were collected from piglets with skin lesions from 2014 to 2021. All strains were subjected to species-specific polymerase chain reaction targeting sodA to confirm the presence of S. hyicus, and polymerase chain reaction amplification of exfoliative toxin genes (exhA, exhB, exhC, exhD, sheta, and shetb) was performed to differentiate toxigenic strains. Pulsed-field gel electrophoresis analysis and minimum inhibitory concentration tests using broth microdilution were conducted to further analyze the strains.</p><p><strong>Results: </strong>Exfoliative toxin genes were detected in 52.9% (n = 9) of the S. hyicus isolates, with notable detection of exhB (17.6%), exhC (17.6%), exhD (11.8%), exhA (5.9%), sheta (0%), and shetb (0%). Pulsed-field gel electrophoresis analysis categorized the isolates into 11 pulsotypes with 70% similarity. Among 18 tested antimicrobials, all isolates exhibited 100% susceptibility to ceftiofur and sulfonamides and high susceptibility rates to neomycin, tilmicosin, and tetracyclines. Whereas the susceptibility rate of spectinomycin was 0% in all isolates, multidrug resistance was observed in 82.4% of the isolates, and in all toxigenic strains.</p><p><strong>Conclusions: </strong>These findings provide crucial insights for monitoring and devising effective treatment strategies for managing exudative epidermitis in pigs caused by S. hyicus.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"20 1","pages":"533"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-024-04396-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Staphylococcus hyicus causes porcine exudative epidermitis, predominantly affecting suckling and weaned piglets. This bacterium produces various exfoliative toxins (ExhA, ExhB, ExhC, ExhD, SHETA, and SHETB), which are responsible for the clinical manifestations of exudative epidermitis. However, treatment failure is common due to frequent antimicrobial resistance in porcine strains. Therefore, this study aimed to identify the genes encoding exfoliative toxins and assess the antimicrobial resistance profiles of S. hyicus. A total of 17 S. hyicus isolates were collected from piglets with skin lesions from 2014 to 2021. All strains were subjected to species-specific polymerase chain reaction targeting sodA to confirm the presence of S. hyicus, and polymerase chain reaction amplification of exfoliative toxin genes (exhA, exhB, exhC, exhD, sheta, and shetb) was performed to differentiate toxigenic strains. Pulsed-field gel electrophoresis analysis and minimum inhibitory concentration tests using broth microdilution were conducted to further analyze the strains.

Results: Exfoliative toxin genes were detected in 52.9% (n = 9) of the S. hyicus isolates, with notable detection of exhB (17.6%), exhC (17.6%), exhD (11.8%), exhA (5.9%), sheta (0%), and shetb (0%). Pulsed-field gel electrophoresis analysis categorized the isolates into 11 pulsotypes with 70% similarity. Among 18 tested antimicrobials, all isolates exhibited 100% susceptibility to ceftiofur and sulfonamides and high susceptibility rates to neomycin, tilmicosin, and tetracyclines. Whereas the susceptibility rate of spectinomycin was 0% in all isolates, multidrug resistance was observed in 82.4% of the isolates, and in all toxigenic strains.

Conclusions: These findings provide crucial insights for monitoring and devising effective treatment strategies for managing exudative epidermitis in pigs caused by S. hyicus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信