{"title":"De Novo Design of Aminopropyl Quaternary Ammonium-Functionalized Covalent Organic Frameworks for Enhanced Polybenzimidazole Anion Exchange Membranes","authors":"Wanting Chen, Qiang Liu, Bo Pang, Fujun Cui, Leilei Wang, Fengpu Zhou, Gaohong He, Xuemei Wu","doi":"10.1002/smll.202407260","DOIUrl":null,"url":null,"abstract":"<p>Quaternary ammonium functionalized covalent organic frameworks (COFs) have great potential to enhance hydroxide transport owing to crystalline ordered 1D nanochannels, however, suffer from limited quaternary ammonium functional monomers and poor membrane-forming ability. In this work, a novel aminopropyl quaternary ammonium-functionalized COF (DCOF) is designed and synthesized via a bottom-up strategy. The self-supporting DCOF membrane exhibits high crystallinity with a dense and orderly arrangement of quaternary ammonium groups (IEC, 2.07 mmol g<sup>−1</sup>), achieving a high hydroxide conductivity of 172.5 mS cm<sup>−1</sup> and an extremely low water swelling of 5.3% at 80 °C. The exfoliated DCOF colloidal suspension is further incorporated into quaternary ammonium di-cation grafted polybenzimidazoles (DPBI) matrix. Molecular simulations reveal strong electrostatic and van der Waals interfacial interactions between DCOF and DPBI, which enable a high doping content of 20 wt.% and interconnected ionic channels through the surface and nanochannels of the DCOF. The DCOF/DPBI-20% membrane exhibits a tensile strength of 29.7 MPa, a hydroxide conductivity of 135.3 mS cm<sup>−1</sup>, and a low swelling ratio of 37.2% at 80 °C. A H<sub>2</sub>/O<sub>2</sub> single cell assembled with the membrane reaches a peak power density of 323 mW cm<sup>−</sup><sup>2</sup>, surpassing most recently reported COF-based membranes.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202407260","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quaternary ammonium functionalized covalent organic frameworks (COFs) have great potential to enhance hydroxide transport owing to crystalline ordered 1D nanochannels, however, suffer from limited quaternary ammonium functional monomers and poor membrane-forming ability. In this work, a novel aminopropyl quaternary ammonium-functionalized COF (DCOF) is designed and synthesized via a bottom-up strategy. The self-supporting DCOF membrane exhibits high crystallinity with a dense and orderly arrangement of quaternary ammonium groups (IEC, 2.07 mmol g−1), achieving a high hydroxide conductivity of 172.5 mS cm−1 and an extremely low water swelling of 5.3% at 80 °C. The exfoliated DCOF colloidal suspension is further incorporated into quaternary ammonium di-cation grafted polybenzimidazoles (DPBI) matrix. Molecular simulations reveal strong electrostatic and van der Waals interfacial interactions between DCOF and DPBI, which enable a high doping content of 20 wt.% and interconnected ionic channels through the surface and nanochannels of the DCOF. The DCOF/DPBI-20% membrane exhibits a tensile strength of 29.7 MPa, a hydroxide conductivity of 135.3 mS cm−1, and a low swelling ratio of 37.2% at 80 °C. A H2/O2 single cell assembled with the membrane reaches a peak power density of 323 mW cm−2, surpassing most recently reported COF-based membranes.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.