Localized Hydrogel Microspheres for Osteoarthritis Treatment: Recruitment and Differentiation of Stem Cells.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Qiming Pang, Zhuolin Chen, Jingdi Zhan, Jiacheng Liu, Junyan Liu, Weikang Zhao, Wei Huang, Lili Dong
{"title":"Localized Hydrogel Microspheres for Osteoarthritis Treatment: Recruitment and Differentiation of Stem Cells.","authors":"Qiming Pang, Zhuolin Chen, Jingdi Zhan, Jiacheng Liu, Junyan Liu, Weikang Zhao, Wei Huang, Lili Dong","doi":"10.1002/adhm.202403490","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) represents a common degenerative joint disorder marked by progressive cartilage degradation, necessitating innovative therapeutic approaches beyond symptom management. Here, this study introduces a novel strategy leveraging the regenerative capabilities of mesenchymal stem cells (MSCs) by utilizing a bioactive extracellular matrix (ECM) derived from IFN-γ-stimulated MSCs, encapsulated within aldehyde- and methacrylic anhydride-modified hyaluronic acid hydrogel microspheres (AH). This engineered scaffold effectively mimics the native cartilage microenvironment, promoting targeted adhesion and retention at damaged sites via spontaneous Schiff base reactions. Notably, the IFN-γ-ECM@AH microspheres facilitate the localized release of key chemokines, such as CXCL12, enhancing endogenous stem cell recruitment, and bioactive factors (e.g., TGF-βI and TGF-β3) to drive chondrogenic differentiation. Additionally, the scaffold possesses binding sites for cellular integrins, further augmenting the regenerative potential of stem cells. Collectively, the approach presents a dual-action mechanism that supports efficient cartilage repair and regeneration, positioning this engineered microenvironment as a promising therapeutic avenue for OA and potentially other degenerative conditions.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403490"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) represents a common degenerative joint disorder marked by progressive cartilage degradation, necessitating innovative therapeutic approaches beyond symptom management. Here, this study introduces a novel strategy leveraging the regenerative capabilities of mesenchymal stem cells (MSCs) by utilizing a bioactive extracellular matrix (ECM) derived from IFN-γ-stimulated MSCs, encapsulated within aldehyde- and methacrylic anhydride-modified hyaluronic acid hydrogel microspheres (AH). This engineered scaffold effectively mimics the native cartilage microenvironment, promoting targeted adhesion and retention at damaged sites via spontaneous Schiff base reactions. Notably, the IFN-γ-ECM@AH microspheres facilitate the localized release of key chemokines, such as CXCL12, enhancing endogenous stem cell recruitment, and bioactive factors (e.g., TGF-βI and TGF-β3) to drive chondrogenic differentiation. Additionally, the scaffold possesses binding sites for cellular integrins, further augmenting the regenerative potential of stem cells. Collectively, the approach presents a dual-action mechanism that supports efficient cartilage repair and regeneration, positioning this engineered microenvironment as a promising therapeutic avenue for OA and potentially other degenerative conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信