Jia Wu, Yuxia Niu, Ziqiang Ling, Jun Zhu, Fangfang Gou
{"title":"Pathological Image Segmentation Method Based on Multiscale and Dual Attention","authors":"Jia Wu, Yuxia Niu, Ziqiang Ling, Jun Zhu, Fangfang Gou","doi":"10.1155/int/9987190","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Medical images play a significant part in biomedical diagnosis, but they have a significant feature. The medical images, influenced by factors such as imaging equipment limitations, local volume effect, and others, inevitably exhibit issues like noise, blurred edges, and inconsistent signal strength. These imperfections pose significant challenges and create obstacles for doctors during their diagnostic processes. To address these issues, we present a pathology image segmentation technique based on the multiscale dual attention mechanism (MSDAUnet), which consists of three primary components. Firstly, an image denoising and enhancement module is constructed by using dynamic residual attention and color histogram to remove image noise and improve image clarity. Then, we propose a dual attention module (DAM), which extracts messages from both channel and spatial dimensions, obtains key features, and makes the edge of the lesion area clearer. Finally, capturing multiscale information in the process of image segmentation addresses the issue of uneven signal strength to a certain extent. Each module is combined for automatic pathological image segmentation. Compared with the traditional and typical U-Net model, MSDAUnet has a better segmentation performance. On the dataset provided by the Research Center for Artificial Intelligence of Monash University, the IOU index is as high as 72.7%, which is nearly 7% higher than that of U-Net, and the DSC index is 84.9%, which is also about 7% higher than that of U-Net.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9987190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9987190","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Medical images play a significant part in biomedical diagnosis, but they have a significant feature. The medical images, influenced by factors such as imaging equipment limitations, local volume effect, and others, inevitably exhibit issues like noise, blurred edges, and inconsistent signal strength. These imperfections pose significant challenges and create obstacles for doctors during their diagnostic processes. To address these issues, we present a pathology image segmentation technique based on the multiscale dual attention mechanism (MSDAUnet), which consists of three primary components. Firstly, an image denoising and enhancement module is constructed by using dynamic residual attention and color histogram to remove image noise and improve image clarity. Then, we propose a dual attention module (DAM), which extracts messages from both channel and spatial dimensions, obtains key features, and makes the edge of the lesion area clearer. Finally, capturing multiscale information in the process of image segmentation addresses the issue of uneven signal strength to a certain extent. Each module is combined for automatic pathological image segmentation. Compared with the traditional and typical U-Net model, MSDAUnet has a better segmentation performance. On the dataset provided by the Research Center for Artificial Intelligence of Monash University, the IOU index is as high as 72.7%, which is nearly 7% higher than that of U-Net, and the DSC index is 84.9%, which is also about 7% higher than that of U-Net.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.