Antisolvent-Mediated Air Quench for High-Efficiency Air-Processed Carbon-Based Planar Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-09-29 DOI:10.1002/solr.202400599
Jacob Wall, Kausar Khawaja, Wenjun Xiang, Adam Dvorak, Christopher Picart, Xiaoyu Gu, Lin Li, Nicholas Rolston, Kai Zhu, Joseph J. Berry, Feng Yan
{"title":"Antisolvent-Mediated Air Quench for High-Efficiency Air-Processed Carbon-Based Planar Perovskite Solar Cells","authors":"Jacob Wall,&nbsp;Kausar Khawaja,&nbsp;Wenjun Xiang,&nbsp;Adam Dvorak,&nbsp;Christopher Picart,&nbsp;Xiaoyu Gu,&nbsp;Lin Li,&nbsp;Nicholas Rolston,&nbsp;Kai Zhu,&nbsp;Joseph J. Berry,&nbsp;Feng Yan","doi":"10.1002/solr.202400599","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells (PSCs) have emerged as a leading low-cost photovoltaic technology, achieving power conversion efficiencies (PCEs) of up to 26.1%. However, their commercialization is hindered by stability issues and the need for controlled processing environments. Carbon-electrode-based PSCs (C-PSCs) offer enhanced stability and cost-effectiveness compared to traditional metal-electrode PSCs, i.e., Au and Ag. However, processing challenges persist, particularly in air conditions where moisture sensitivity poses a significant hurdle. Herein, a novel air processing technique is presented for planar C-PSCs that incorporates antisolvent vapors, such as chlorobenzene, into a controlled air-quenching process. This method effectively mitigates moisture-induced instability, resulting in champion PCEs exceeding 20% and robust stability under ambient conditions. The approach retains 80% of initial efficiency after 30 h of operation at maximum power point without encapsulation. This antisolvent-mediated air-quenching technique represents a significant advancement in the scalable production of C-PSCs, paving the way for future large-scale deployment.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 22","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400599","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have emerged as a leading low-cost photovoltaic technology, achieving power conversion efficiencies (PCEs) of up to 26.1%. However, their commercialization is hindered by stability issues and the need for controlled processing environments. Carbon-electrode-based PSCs (C-PSCs) offer enhanced stability and cost-effectiveness compared to traditional metal-electrode PSCs, i.e., Au and Ag. However, processing challenges persist, particularly in air conditions where moisture sensitivity poses a significant hurdle. Herein, a novel air processing technique is presented for planar C-PSCs that incorporates antisolvent vapors, such as chlorobenzene, into a controlled air-quenching process. This method effectively mitigates moisture-induced instability, resulting in champion PCEs exceeding 20% and robust stability under ambient conditions. The approach retains 80% of initial efficiency after 30 h of operation at maximum power point without encapsulation. This antisolvent-mediated air-quenching technique represents a significant advancement in the scalable production of C-PSCs, paving the way for future large-scale deployment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信