Juno Observations Set New Constraints on the Electrodynamic Interaction Between Io and Jupiter

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
S. Kotsiaros, J. E. P. Connerney, J. Saur, A. Kokkalis, M. Herceg, Y. M. Martos, S. Schlegel, J. L. Jørgensen, S. J. Bolton
{"title":"Juno Observations Set New Constraints on the Electrodynamic Interaction Between Io and Jupiter","authors":"S. Kotsiaros,&nbsp;J. E. P. Connerney,&nbsp;J. Saur,&nbsp;A. Kokkalis,&nbsp;M. Herceg,&nbsp;Y. M. Martos,&nbsp;S. Schlegel,&nbsp;J. L. Jørgensen,&nbsp;S. J. Bolton","doi":"10.1029/2024JA032591","DOIUrl":null,"url":null,"abstract":"<p>Juno's highly elliptical polar orbits provide unprecedented in-situ observations of the electrodynamic interaction between Jupiter and its volcanic moon Io. These observations occur in regions never sampled before both near Io's orbit and near Jupiter's ionosphere and at distances between the two. Magnetic field data obtained during multiple traversals of magnetic field lines mapping to Io's orbit reveal remarkably rich and complex magnetic signatures near flux tubes connected to Io's orbital position. Here we present a methodology to model the distribution of currents along Io's flux tube (IFT) and Alfvén wings in such a way as to match the magnetic field signature observed during Juno's traversals of the IFT and Alfvén wings downstream of Io. We obtain the location, size and morphology of the current-carrying region as well as the distribution of currents within the IFT and Alfvén wings. The observed field-aligned currents exhibit strong filamentation, with upward and downward currents splitting into secondary cells rather than forming uniform structures. Additionally, there is a strong correlation between total field-aligned current intensity, particle energy flux, and Poynting flux, indicating efficient energy transfer and coupling in the Jupiter-Io system. Using all of Juno's traversals up to perijove (PJ) pass 42, we estimate the strength of the interaction with regards to distance along Io's extended tail, Io's position in the plasma torus and the magnetic field intensity at the footprint in Jupiter's ionosphere, illuminating the interaction of Jovian magnetospheric plasma with Io and setting important constraints in the Io-Jupiter interaction.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032591","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Juno's highly elliptical polar orbits provide unprecedented in-situ observations of the electrodynamic interaction between Jupiter and its volcanic moon Io. These observations occur in regions never sampled before both near Io's orbit and near Jupiter's ionosphere and at distances between the two. Magnetic field data obtained during multiple traversals of magnetic field lines mapping to Io's orbit reveal remarkably rich and complex magnetic signatures near flux tubes connected to Io's orbital position. Here we present a methodology to model the distribution of currents along Io's flux tube (IFT) and Alfvén wings in such a way as to match the magnetic field signature observed during Juno's traversals of the IFT and Alfvén wings downstream of Io. We obtain the location, size and morphology of the current-carrying region as well as the distribution of currents within the IFT and Alfvén wings. The observed field-aligned currents exhibit strong filamentation, with upward and downward currents splitting into secondary cells rather than forming uniform structures. Additionally, there is a strong correlation between total field-aligned current intensity, particle energy flux, and Poynting flux, indicating efficient energy transfer and coupling in the Jupiter-Io system. Using all of Juno's traversals up to perijove (PJ) pass 42, we estimate the strength of the interaction with regards to distance along Io's extended tail, Io's position in the plasma torus and the magnetic field intensity at the footprint in Jupiter's ionosphere, illuminating the interaction of Jovian magnetospheric plasma with Io and setting important constraints in the Io-Jupiter interaction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信