A Novel Determination of the Foreshock ULF Boundary: Statistical Approach

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
A. Salohub, J. Šafránková, Z. Němeček, G. Pi
{"title":"A Novel Determination of the Foreshock ULF Boundary: Statistical Approach","authors":"A. Salohub,&nbsp;J. Šafránková,&nbsp;Z. Němeček,&nbsp;G. Pi","doi":"10.1029/2024JA033195","DOIUrl":null,"url":null,"abstract":"<p>The location and spatial extent of the region populated by the foreshock waves depend on the IMF orientation. We performed a systematic statistical study of wave activity in the frequency range of <span></span><math>\n <semantics>\n <mrow>\n <mn>0.03</mn>\n <mo>−</mo>\n <mn>0.15</mn>\n </mrow>\n <annotation> $0.03-0.15$</annotation>\n </semantics></math> Hz observed during an initial phase of the THEMIS mission. Wave activity is quantified by standard deviations of the IMF magnitude and its components over 10-min intervals. We apply the foreshock coordinate system defined as the angle between the bow shock normal and upstream magnetic field vectors and the distance from the spacecraft to bow shock along the magnetic field line. We have found that the Ultra-low Frequency (ULF) foreshock boundary (a) is well defined in these coordinates, (b) it tends to shift outward with an increasing solar wind bulk speed, and (c) with an increasing Mach number. However, the change of the fluctuation level in the foreshock is not uniform because the increasing solar wind bulk speed enhances the fluctuation level mainly in a close proximity of the bow shock whereas the increasing Mach number leads to an intensification of fluctuation levels at the foreshock boundary.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033195","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The location and spatial extent of the region populated by the foreshock waves depend on the IMF orientation. We performed a systematic statistical study of wave activity in the frequency range of 0.03 0.15 $0.03-0.15$  Hz observed during an initial phase of the THEMIS mission. Wave activity is quantified by standard deviations of the IMF magnitude and its components over 10-min intervals. We apply the foreshock coordinate system defined as the angle between the bow shock normal and upstream magnetic field vectors and the distance from the spacecraft to bow shock along the magnetic field line. We have found that the Ultra-low Frequency (ULF) foreshock boundary (a) is well defined in these coordinates, (b) it tends to shift outward with an increasing solar wind bulk speed, and (c) with an increasing Mach number. However, the change of the fluctuation level in the foreshock is not uniform because the increasing solar wind bulk speed enhances the fluctuation level mainly in a close proximity of the bow shock whereas the increasing Mach number leads to an intensification of fluctuation levels at the foreshock boundary.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信