Virtual Inertial Control of Small- and Medium-Sized Wind Turbines on Mobile Offshore Platforms with DC Microgrids

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruifang Zhang, Guoling Wang, Zhenyu Li, Fuqiao He, Chenghan Luo, Wensheng Cao
{"title":"Virtual Inertial Control of Small- and Medium-Sized Wind Turbines on Mobile Offshore Platforms with DC Microgrids","authors":"Ruifang Zhang,&nbsp;Guoling Wang,&nbsp;Zhenyu Li,&nbsp;Fuqiao He,&nbsp;Chenghan Luo,&nbsp;Wensheng Cao","doi":"10.1155/2024/3886096","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The renewable energy mobile offshore platform, which adopts the combined power supply of renewable energy and energy storage, is an important carrier for the development and utilization of marine resources. The randomness of renewable energy generation has a more prominent effect on the bus voltage stability and transient voltage deviation of the power system with small capacity and low inertia. Considering the operation and maintenance characteristics of the offshore platform, a virtual inertia control method for small- and medium-sized wind turbines is proposed. Firstly, by analyzing the characteristics of the renewable energy microgrid of the unattended offshore platform, considering the operating environment with high average wind speed at sea, the mechanical inertia in the wind turbine is selected as the energy source of virtual inertia. The structure of the wind power generation unit is analyzed, and small signal modeling is carried out. A virtual inertia control method based on power droop is proposed, and the rotational inertia and the damping coefficient are obtained from the characteristics of transient and steady-state analysis of the system. Finally, the DC microgrid experiment platform of the offshore platform is constructed, and it is verified that the proposed method makes full use of the characteristics of the offshore platform to enhance system inertia and improve the operational stability of the offshore platform DC microgrid system.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3886096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3886096","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The renewable energy mobile offshore platform, which adopts the combined power supply of renewable energy and energy storage, is an important carrier for the development and utilization of marine resources. The randomness of renewable energy generation has a more prominent effect on the bus voltage stability and transient voltage deviation of the power system with small capacity and low inertia. Considering the operation and maintenance characteristics of the offshore platform, a virtual inertia control method for small- and medium-sized wind turbines is proposed. Firstly, by analyzing the characteristics of the renewable energy microgrid of the unattended offshore platform, considering the operating environment with high average wind speed at sea, the mechanical inertia in the wind turbine is selected as the energy source of virtual inertia. The structure of the wind power generation unit is analyzed, and small signal modeling is carried out. A virtual inertia control method based on power droop is proposed, and the rotational inertia and the damping coefficient are obtained from the characteristics of transient and steady-state analysis of the system. Finally, the DC microgrid experiment platform of the offshore platform is constructed, and it is verified that the proposed method makes full use of the characteristics of the offshore platform to enhance system inertia and improve the operational stability of the offshore platform DC microgrid system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信