Badri Bhakta Shrestha, Mohamed Rasmy, Tomoki Ushiyama, Ralph Allen Acierto, Takatoshi Kawamoto, Masakazu Fujikane, Takafumi Shinya, Keijiro Kubota
{"title":"Assessment of future risk of agricultural crop production under climate and social changes scenarios: A case of the Solo River basin in Indonesia","authors":"Badri Bhakta Shrestha, Mohamed Rasmy, Tomoki Ushiyama, Ralph Allen Acierto, Takatoshi Kawamoto, Masakazu Fujikane, Takafumi Shinya, Keijiro Kubota","doi":"10.1111/jfr3.13052","DOIUrl":null,"url":null,"abstract":"<p>Understanding the impacts of climate change and conversion of paddy field areas in the future on agricultural production is an essential part of flood-risk management. However, the quantitative impact of flood on agricultural crops in the far-future under climate change, considering prospective changes in paddy area, is still not clearly understandable. This study thus focused on quantitative analysis of flood impact on rice crops under climate change using MRI-AGCM climate model outputs for the past (1979–2002) and far-future (2075–2098) periods for the Solo River basin in Indonesia. We developed a quantitative damage assessment method by coupling water and energy budget-based rainfall-runoff-inundation model outputs and a depth-duration-damage flood loss model. We also analyzed land-use and land cover changes to project future paddy areas. The future rice production in the study basin may decrease by 21% by 2048 and by 24.6% by 2076 compared with that in 2020, due to the conversion of paddy fields to other land cover classes. The average annual flood damage value of rice crops may increase in the future period (2075–2098) by 93.7% (average damage: 666.08 billion IDR) compared with that in the past period (1979–2002) (average damage: 343.7 billion IDR), due to climate change impacts alone.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13052","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the impacts of climate change and conversion of paddy field areas in the future on agricultural production is an essential part of flood-risk management. However, the quantitative impact of flood on agricultural crops in the far-future under climate change, considering prospective changes in paddy area, is still not clearly understandable. This study thus focused on quantitative analysis of flood impact on rice crops under climate change using MRI-AGCM climate model outputs for the past (1979–2002) and far-future (2075–2098) periods for the Solo River basin in Indonesia. We developed a quantitative damage assessment method by coupling water and energy budget-based rainfall-runoff-inundation model outputs and a depth-duration-damage flood loss model. We also analyzed land-use and land cover changes to project future paddy areas. The future rice production in the study basin may decrease by 21% by 2048 and by 24.6% by 2076 compared with that in 2020, due to the conversion of paddy fields to other land cover classes. The average annual flood damage value of rice crops may increase in the future period (2075–2098) by 93.7% (average damage: 666.08 billion IDR) compared with that in the past period (1979–2002) (average damage: 343.7 billion IDR), due to climate change impacts alone.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.