Jannatul Ferdous Mousumi, Yahya Bougdid, Gunjan Kulkarni, Tianyi Li, Ranganathan Kumar, Aravinda Kar, Kristopher Olan Davis
{"title":"Laser-Sintered Silver Metallization for Silicon Heterojunction Photovoltaic Cells","authors":"Jannatul Ferdous Mousumi, Yahya Bougdid, Gunjan Kulkarni, Tianyi Li, Ranganathan Kumar, Aravinda Kar, Kristopher Olan Davis","doi":"10.1002/solr.202400527","DOIUrl":null,"url":null,"abstract":"<p>\nHerein, a novel metallization technique is reported for crystalline silicon heterojunction (SHJ) solar cells in which silver (Ag) fingers are printed on the SHJ substrates by dispensing Ag nanoparticle-based inks through a needle and then sintered with a continuous-wave carbon dioxide (CO<sub>2</sub>) laser. The impact of the Ag ink viscosity on the line quality and the line resistance is investigated on three Ag inks with different viscosities. Increasing ink viscosity yields higher Ag contact heights, larger aspect ratios, and lower line resistance values. The Ag line height increases from less than a micrometer to ≈18.62 ± 3.48 μm with the increasing viscosity. Photoluminescence imaging shows that the low-resistance Ag metal contacts obtained do not result in any passivation damage of the SHJ substrate. This is because the wavelength of light emitted from the CO<sub>2</sub> laser (i.e., 10.6 μm) leads to optical absorption in the Ag, but this light is effectively transparent to the transparent conductive oxide film, amorphous silicon films, and crystalline silicon substrate. Bulk resistivity values as low as 6.5 μΩ cm are obtained for the laser-sintered Ag contact and printed using the Ag ink with the highest viscosity in this work.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 22","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400527","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a novel metallization technique is reported for crystalline silicon heterojunction (SHJ) solar cells in which silver (Ag) fingers are printed on the SHJ substrates by dispensing Ag nanoparticle-based inks through a needle and then sintered with a continuous-wave carbon dioxide (CO2) laser. The impact of the Ag ink viscosity on the line quality and the line resistance is investigated on three Ag inks with different viscosities. Increasing ink viscosity yields higher Ag contact heights, larger aspect ratios, and lower line resistance values. The Ag line height increases from less than a micrometer to ≈18.62 ± 3.48 μm with the increasing viscosity. Photoluminescence imaging shows that the low-resistance Ag metal contacts obtained do not result in any passivation damage of the SHJ substrate. This is because the wavelength of light emitted from the CO2 laser (i.e., 10.6 μm) leads to optical absorption in the Ag, but this light is effectively transparent to the transparent conductive oxide film, amorphous silicon films, and crystalline silicon substrate. Bulk resistivity values as low as 6.5 μΩ cm are obtained for the laser-sintered Ag contact and printed using the Ag ink with the highest viscosity in this work.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.