Organic Salt Buffer Layer Enables High-Performance NiOx-Based Inverted Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-10-06 DOI:10.1002/solr.202400534
Yun Wang, Qing Lian, Zhehan Ying, Yulan Huang, Dongyang Li, Ouwen Peng, Zhiyang Wu, Abbas Amini, Ning Wang, Wei Zhang, Chun Cheng
{"title":"Organic Salt Buffer Layer Enables High-Performance NiOx-Based Inverted Perovskite Solar Cells","authors":"Yun Wang,&nbsp;Qing Lian,&nbsp;Zhehan Ying,&nbsp;Yulan Huang,&nbsp;Dongyang Li,&nbsp;Ouwen Peng,&nbsp;Zhiyang Wu,&nbsp;Abbas Amini,&nbsp;Ning Wang,&nbsp;Wei Zhang,&nbsp;Chun Cheng","doi":"10.1002/solr.202400534","DOIUrl":null,"url":null,"abstract":"<p>\nThe merits of a low-cost fabrication process, suitable band structure, excellent wettability to perovskite precursor, and outstanding stability ensure NiO<sub><i>x</i></sub> as a hole transport material with beneficial characteristics to construct high-performance perovskite solar cells (PSCs). However, direct contact between perovskite and NiO<sub><i>x</i></sub> causes delamination and chemical instability and thus results in poor carrier transport and short device lifespan. Here, we propose a solution for this issue by introducing an organic salt additive 4-(trifluoromethyl) benzylammonium formate (TFMBAFa) in the perovskite precursor to passivate perovskite film and NiO<sub><i>x</i></sub>@(2-(3,6-dimethyl-9H-carbazol-9-yl) ethyl) phosphonic acid (Me-2PACz) composited hole transport layer (HTL), and thus construct a buffer layer between perovskite-HTL interface. The effective diminishing of NiO<sub><i>x</i></sub>/perovskite interfacial reactions and defects results in enhanced carrier transport. Consequently, the target device achieves simultaneous improvements in power conversion efficiency (24.2%), storage stability (T100 &gt; 1400 h), thermal stability (T80 &gt; 1000 h), and operational stability (T70 &gt; 850 h), where T100, T80, and T70 refer to the retention of 100%, 80%, and 70% of initial PCE, respectively. This work provides an effective strategy to advance the performance of NiO<sub><i>x</i></sub>-based inverted PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 22","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400534","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The merits of a low-cost fabrication process, suitable band structure, excellent wettability to perovskite precursor, and outstanding stability ensure NiOx as a hole transport material with beneficial characteristics to construct high-performance perovskite solar cells (PSCs). However, direct contact between perovskite and NiOx causes delamination and chemical instability and thus results in poor carrier transport and short device lifespan. Here, we propose a solution for this issue by introducing an organic salt additive 4-(trifluoromethyl) benzylammonium formate (TFMBAFa) in the perovskite precursor to passivate perovskite film and NiOx@(2-(3,6-dimethyl-9H-carbazol-9-yl) ethyl) phosphonic acid (Me-2PACz) composited hole transport layer (HTL), and thus construct a buffer layer between perovskite-HTL interface. The effective diminishing of NiOx/perovskite interfacial reactions and defects results in enhanced carrier transport. Consequently, the target device achieves simultaneous improvements in power conversion efficiency (24.2%), storage stability (T100 > 1400 h), thermal stability (T80 > 1000 h), and operational stability (T70 > 850 h), where T100, T80, and T70 refer to the retention of 100%, 80%, and 70% of initial PCE, respectively. This work provides an effective strategy to advance the performance of NiOx-based inverted PSCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信