Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries

Mohamed M. Abdelaal, Mohammad Alkhedher
{"title":"Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries","authors":"Mohamed M. Abdelaal,&nbsp;Mohammad Alkhedher","doi":"10.1016/j.nxener.2024.100216","DOIUrl":null,"url":null,"abstract":"<div><div>Ni-rich oxides with layered structures are considered promising cathode materials for high-voltage lithium-ion batteries due to their high capacity and wide potential window. However, they suffer from volume expansion and contraction, as well as Ni reactivity with electrolyte components, leading to structural degradation and continuous lithium consumption during cycling. In this study, a highly electrically and ionically layer of Te-doped LiNbO<sub>3</sub> is coated onto the surface of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) to protect the crystal structure from cracks and side reactions with the electrolyte at high voltages (4.3 V <em>vs.</em> Li/Li<sup>+</sup>). Characterization techniques, including X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS), are employed to analyze the structure, morphology, and electrochemical performance of the coated materials. Results show that the delivered capacity at 0.1 C increases from 192.9 to 210.8 mAh g<sup>−1</sup> and the capacity retention at 0.2 C increases from 79.7 to 89.2% after 100 cycles. Moreover, the diffusion coefficient of the coated NCM is 4.6 × 10<sup>−13</sup> cm<sup>2</sup> s<sup>−1</sup>, while that of bare NCM is only 1.5 × 10<sup>−13</sup> cm<sup>2</sup> s<sup>−1</sup> due to the reactivity of the coating layer with lithium. These findings provide valuable insights into the design and optimization of cathode materials for next-generation energy storage systems, contributing to the advancement of sustainable and efficient energy technologies.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"7 ","pages":"Article 100216"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ni-rich oxides with layered structures are considered promising cathode materials for high-voltage lithium-ion batteries due to their high capacity and wide potential window. However, they suffer from volume expansion and contraction, as well as Ni reactivity with electrolyte components, leading to structural degradation and continuous lithium consumption during cycling. In this study, a highly electrically and ionically layer of Te-doped LiNbO3 is coated onto the surface of LiNi0.8Co0.1Mn0.1O2 (NCM811) to protect the crystal structure from cracks and side reactions with the electrolyte at high voltages (4.3 V vs. Li/Li+). Characterization techniques, including X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS), are employed to analyze the structure, morphology, and electrochemical performance of the coated materials. Results show that the delivered capacity at 0.1 C increases from 192.9 to 210.8 mAh g−1 and the capacity retention at 0.2 C increases from 79.7 to 89.2% after 100 cycles. Moreover, the diffusion coefficient of the coated NCM is 4.6 × 10−13 cm2 s−1, while that of bare NCM is only 1.5 × 10−13 cm2 s−1 due to the reactivity of the coating layer with lithium. These findings provide valuable insights into the design and optimization of cathode materials for next-generation energy storage systems, contributing to the advancement of sustainable and efficient energy technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信