Role of chirality in photoinduced electron transfer in pentapeptide (L)-His-(L/D)-Asp-(L/D)-Ser-Gly-(L)Tyr in solutions

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ilya M. Magin , Roman S. Lukyanov , Alexandra A. Ageeva , Alexander I. Kruppa , Nikolay E. Polyakov , Tatyana V. Leshina
{"title":"Role of chirality in photoinduced electron transfer in pentapeptide (L)-His-(L/D)-Asp-(L/D)-Ser-Gly-(L)Tyr in solutions","authors":"Ilya M. Magin ,&nbsp;Roman S. Lukyanov ,&nbsp;Alexandra A. Ageeva ,&nbsp;Alexander I. Kruppa ,&nbsp;Nikolay E. Polyakov ,&nbsp;Tatyana V. Leshina","doi":"10.1016/j.jphotochem.2024.116164","DOIUrl":null,"url":null,"abstract":"<div><div>Factors governing electron transfer (ET) in proteins and peptides are widely studied due to the role of ET in biologically important processes. One of them is the influence of the optical configuration of amino acids on the ability of peptides to aggregate into ensembles: dimers, oligomers, fibrils. Such assemblies, called amyloids, are known to contain D-isomers of asparagine and serine, and their presence in aging living organisms leads to a number of diseases, including Alzheimer’s disease. However, how these amino acids affect the structure and properties of peptides have not yet been established. Using the example of the pentapeptide (PP)-(L)histidine-(L)asparagine-(L)serine-glycine-(L)tyrosine and its analogues with D-asparagine and D-serine, this article studies the comparative reactivity of optical isomers in photoinduced ET using chemically induced dynamic nuclear polarization (CIDNP), fluorescence spectroscopy and quantum chemical calculations. The CIDNP method was chosen because it had previously demonstrated high sensitivity to ET processes in chiral dyads linked by non-covalent interactions. ET involving Tyr and His residues of PP was detected under UV irradiation both in the presence of an electron acceptor, naproxen, and during photolysis of PP itself. It was shown that the efficiency of ET and PP fluorescence quenching differ for optical isomers of asparagine and serine. In addition, the dependence of the CIDNP efficiency on the PP concentration showed that ET between Tyr and peptide bonds can occur in the dimer of the PP. Quantum chemical calculation confirm the possibility of PP self-association.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"461 ","pages":"Article 116164"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024007081","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Factors governing electron transfer (ET) in proteins and peptides are widely studied due to the role of ET in biologically important processes. One of them is the influence of the optical configuration of amino acids on the ability of peptides to aggregate into ensembles: dimers, oligomers, fibrils. Such assemblies, called amyloids, are known to contain D-isomers of asparagine and serine, and their presence in aging living organisms leads to a number of diseases, including Alzheimer’s disease. However, how these amino acids affect the structure and properties of peptides have not yet been established. Using the example of the pentapeptide (PP)-(L)histidine-(L)asparagine-(L)serine-glycine-(L)tyrosine and its analogues with D-asparagine and D-serine, this article studies the comparative reactivity of optical isomers in photoinduced ET using chemically induced dynamic nuclear polarization (CIDNP), fluorescence spectroscopy and quantum chemical calculations. The CIDNP method was chosen because it had previously demonstrated high sensitivity to ET processes in chiral dyads linked by non-covalent interactions. ET involving Tyr and His residues of PP was detected under UV irradiation both in the presence of an electron acceptor, naproxen, and during photolysis of PP itself. It was shown that the efficiency of ET and PP fluorescence quenching differ for optical isomers of asparagine and serine. In addition, the dependence of the CIDNP efficiency on the PP concentration showed that ET between Tyr and peptide bonds can occur in the dimer of the PP. Quantum chemical calculation confirm the possibility of PP self-association.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信