Efficiency evaluation of commonly used methods to accelerate formaldehyde release and removal in households: A field measurement in bedroom

IF 7.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yangyang Gao , Mengtao Han
{"title":"Efficiency evaluation of commonly used methods to accelerate formaldehyde release and removal in households: A field measurement in bedroom","authors":"Yangyang Gao ,&nbsp;Mengtao Han","doi":"10.1016/j.buildenv.2024.112348","DOIUrl":null,"url":null,"abstract":"<div><div>Modern home interiors are prone to toxic gas emissions, such as formaldehyde, which can lead to respiratory diseases and cancer. Therefore, removing formaldehyde from households is crucial. This study measured the effects of common household factors (air temperature and light intensity) on formaldehyde release, and evaluated the efficiency of various removal methods (pothos, activated carbon, TiO<sub>2</sub> suspension, and ventilation) in bedroom. The formaldehyde release rate (<em>K</em>) ratio at different air temperatures: <em>K</em><sub>16</sub> °<sub>C</sub>:<em>K</em><sub>21</sub> °<sub>C</sub>:<em>K</em><sub>26</sub> °<sub>C</sub> = 0.474:1:1.65. Under different light conditions: <em>K</em><sub>UV-125</sub><sub>l</sub><sub>x</sub>:<em>K</em><sub>UV-324</sub><sub>l</sub><sub>x</sub>:<em>K</em><sub>INB-117</sub><sub>l</sub><sub>x</sub> = 2.407:4.099:1. Regarding formaldehyde removal, Pothos initially contributed to a fluctuation in formaldehyde concentration (<em>C</em>) due to vapor release, but had minimal overall impact on removal. Activated carbon and TiO<sub>2</sub> suspensions can remove formaldehyde. Activated carbon initially caused <em>C</em> to decline, followed by a subsequent increase. The TiO<sub>2</sub> suspension increased humidity, leading to an initial rise in <em>C</em>, followed by a decrease to a stabilized level. Ventilation led to a rapid drop in <em>C</em>, followed by an increase, and finally a decline, due to the dynamic balance between ventilation and <em>K</em>. Comprehensive evaluation of the net formaldehyde removal rate per unit volume (or per unit leaf area for pothos) revealed: activated carbon &gt;TiO<sub>2</sub> suspension &gt;pothos. At different air change per hour (ACH), the ratio of time required for formaldehyde removal (<em>t</em>) was <em>t</em><sub>ACH-10.89</sub>:<em>t</em><sub>ACH-54.39</sub>:<em>t</em><sub>ACH-108.78</sub> = 1.825:1:0.754. Effect size analysis showed that Cohen's d for primary data was &gt;0.5, combined with the <em>K, C</em>, and <em>t</em> results, temperature and UV irradiation were positively correlated with formaldehyde release, while ACH and activated carbon amount were positively correlated with formaldehyde removal.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"268 ","pages":"Article 112348"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324011909","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern home interiors are prone to toxic gas emissions, such as formaldehyde, which can lead to respiratory diseases and cancer. Therefore, removing formaldehyde from households is crucial. This study measured the effects of common household factors (air temperature and light intensity) on formaldehyde release, and evaluated the efficiency of various removal methods (pothos, activated carbon, TiO2 suspension, and ventilation) in bedroom. The formaldehyde release rate (K) ratio at different air temperatures: K16 °C:K21 °C:K26 °C = 0.474:1:1.65. Under different light conditions: KUV-125lx:KUV-324lx:KINB-117lx = 2.407:4.099:1. Regarding formaldehyde removal, Pothos initially contributed to a fluctuation in formaldehyde concentration (C) due to vapor release, but had minimal overall impact on removal. Activated carbon and TiO2 suspensions can remove formaldehyde. Activated carbon initially caused C to decline, followed by a subsequent increase. The TiO2 suspension increased humidity, leading to an initial rise in C, followed by a decrease to a stabilized level. Ventilation led to a rapid drop in C, followed by an increase, and finally a decline, due to the dynamic balance between ventilation and K. Comprehensive evaluation of the net formaldehyde removal rate per unit volume (or per unit leaf area for pothos) revealed: activated carbon >TiO2 suspension >pothos. At different air change per hour (ACH), the ratio of time required for formaldehyde removal (t) was tACH-10.89:tACH-54.39:tACH-108.78 = 1.825:1:0.754. Effect size analysis showed that Cohen's d for primary data was >0.5, combined with the K, C, and t results, temperature and UV irradiation were positively correlated with formaldehyde release, while ACH and activated carbon amount were positively correlated with formaldehyde removal.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信