A simulation study on building-scale strategies for urban heat island mitigation and building energy consumption: Case study in Japan

IF 7.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Feifei Dong, Takashi Asawa
{"title":"A simulation study on building-scale strategies for urban heat island mitigation and building energy consumption: Case study in Japan","authors":"Feifei Dong,&nbsp;Takashi Asawa","doi":"10.1016/j.buildenv.2024.112311","DOIUrl":null,"url":null,"abstract":"<div><div>The urban heat island (UHI) phenomenon and high building energy consumption are increasingly being associated with urbanization. Various strategies have been proposed for UHI mitigation and energy conservation in buildings. Nonetheless, the combined effects of the multiple strategies must be studied. This study clarifies the individual and combined effects of commonly used building-scale strategies (i.e., replacing ground materials, adding greenery, adjusting window-to-wall ratios, using high-performance glazing, increasing insulation thickness in the building envelope, changing roof surfaces, and adjusting air-conditioning operating temperatures) on UHI mitigation and building energy consumption reduction in both summer and winter. The selected strategies were implemented in a city block in Yokohama, Japan using a surface energy balance (SEB) simulation model. The simulation results demonstrated that planting tall deciduous trees was the most effective individual strategy for mitigating UHI and reducing energy consumption. While the highest UHI mitigation and energy savings were achieved by implementing all tested strategies simultaneously, a combination of water-retaining pavement, adjusting the air-conditioning operating temperature (28 °C in summer and 20 °C in winter), and a 100 mm insulation layer in the building envelope along with a green roof, demonstrated substantial effectiveness with fewer strategies. The interactions among these strategies provided either additive or offset effects. Therefore, selecting strategies with distinct action targets is crucial to maximize the combined effectiveness.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"268 ","pages":"Article 112311"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324011533","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The urban heat island (UHI) phenomenon and high building energy consumption are increasingly being associated with urbanization. Various strategies have been proposed for UHI mitigation and energy conservation in buildings. Nonetheless, the combined effects of the multiple strategies must be studied. This study clarifies the individual and combined effects of commonly used building-scale strategies (i.e., replacing ground materials, adding greenery, adjusting window-to-wall ratios, using high-performance glazing, increasing insulation thickness in the building envelope, changing roof surfaces, and adjusting air-conditioning operating temperatures) on UHI mitigation and building energy consumption reduction in both summer and winter. The selected strategies were implemented in a city block in Yokohama, Japan using a surface energy balance (SEB) simulation model. The simulation results demonstrated that planting tall deciduous trees was the most effective individual strategy for mitigating UHI and reducing energy consumption. While the highest UHI mitigation and energy savings were achieved by implementing all tested strategies simultaneously, a combination of water-retaining pavement, adjusting the air-conditioning operating temperature (28 °C in summer and 20 °C in winter), and a 100 mm insulation layer in the building envelope along with a green roof, demonstrated substantial effectiveness with fewer strategies. The interactions among these strategies provided either additive or offset effects. Therefore, selecting strategies with distinct action targets is crucial to maximize the combined effectiveness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信