{"title":"Insights into the doping functions on redox chemistry of layered Ni-rich cathodes","authors":"Zhenxing Wang, Yong Chen","doi":"10.1016/j.jechem.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>In pursuit of low cost and long life for lithium-ion batteries in electric vehicles, the most promising strategy is to replace the commercial LiCoO<sub>2</sub> with a high-energy-density Ni-rich cathode. However, the irreversible redox couples induce rapid capacity decay, poor long-term cycling life, vast gas evolution, and unstable structure transformations of the Ni-rich cathode, limiting its practical applications. Element doping has been considered as the most promising strategy for addressing these issues. However, the relationships between element doping functions and redox chemistry still remain confused. To clarify this connection, this review places the dynamic evolution of redox couples (Li<sup>+</sup>, Ni<sup>2+</sup>/Ni<sup>3+</sup>/Ni<sup>4+</sup>-e<sup>−</sup>, O<sup>2−</sup>/O<em><sup>n</sup></em><sup>−</sup>/O<sub>2</sub>-e<sup>−</sup>) as the tree trunk. The material structure, degradation mechanisms, and addressing element doping strategies are considered as the tree branches. This comprehensive summary aims to provide an overview of the current understanding and progress of Ni-rich cathode materials. In the last section, promising strategies based on element doping functions are provided to encourage the practical application of Ni-rich cathodes. These strategies also offer a new approach for the development of other intercalated electrode materials in Na and K-based battery systems.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 386-412"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007642","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
In pursuit of low cost and long life for lithium-ion batteries in electric vehicles, the most promising strategy is to replace the commercial LiCoO2 with a high-energy-density Ni-rich cathode. However, the irreversible redox couples induce rapid capacity decay, poor long-term cycling life, vast gas evolution, and unstable structure transformations of the Ni-rich cathode, limiting its practical applications. Element doping has been considered as the most promising strategy for addressing these issues. However, the relationships between element doping functions and redox chemistry still remain confused. To clarify this connection, this review places the dynamic evolution of redox couples (Li+, Ni2+/Ni3+/Ni4+-e−, O2−/On−/O2-e−) as the tree trunk. The material structure, degradation mechanisms, and addressing element doping strategies are considered as the tree branches. This comprehensive summary aims to provide an overview of the current understanding and progress of Ni-rich cathode materials. In the last section, promising strategies based on element doping functions are provided to encourage the practical application of Ni-rich cathodes. These strategies also offer a new approach for the development of other intercalated electrode materials in Na and K-based battery systems.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy