{"title":"Influence of GeO2/TeO2 ratio on thermal, structure and spectroscopic properties of Dy3+-doped tellurite-germanate glass","authors":"Jiapeng Li, Xue Wang","doi":"10.1016/j.infrared.2024.105642","DOIUrl":null,"url":null,"abstract":"<div><div>Dy<sub>2</sub>O<sub>3</sub>-doped tellurite-germanate glasses with an increase of GeO<sub>2</sub>/TeO<sub>2</sub> ratio (TGZ) were synthesized and characterized through X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman, absorption, and emission spectra measurements. XRD spectra of Dy<sup>3+</sup>-doped TGZ glass confirmed the amorphous structure. The TGZ glass possess the higher anti-crystallization abilities than that of the pure tellurite glass. Raman spectroscopy showed that the amount of [TeO<sub>3</sub>] and [TeO<sub>3+1</sub>] units in the glass network were gradually decreased by increasing the ratio of GeO<sub>2</sub> to TeO<sub>2</sub>. The result was further supported by the optical band gap energy of the TGZ glass. The luminescence intensity of the sample increased with an increase in GeO<sub>2</sub> content and reached a maximum value at 10 mol%. The chromaticity coordinates of CIE 1931 were in the warm white light range, and the corresponding color temperature range was 3400 K–3600 K. The results showed that the addition of GeO<sub>2</sub> to Dy<sup>3+</sup>-doped tellurite glass can improve the thermal stability and luminescence performance of the white light-emitting band.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"144 ","pages":"Article 105642"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005267","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Dy2O3-doped tellurite-germanate glasses with an increase of GeO2/TeO2 ratio (TGZ) were synthesized and characterized through X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman, absorption, and emission spectra measurements. XRD spectra of Dy3+-doped TGZ glass confirmed the amorphous structure. The TGZ glass possess the higher anti-crystallization abilities than that of the pure tellurite glass. Raman spectroscopy showed that the amount of [TeO3] and [TeO3+1] units in the glass network were gradually decreased by increasing the ratio of GeO2 to TeO2. The result was further supported by the optical band gap energy of the TGZ glass. The luminescence intensity of the sample increased with an increase in GeO2 content and reached a maximum value at 10 mol%. The chromaticity coordinates of CIE 1931 were in the warm white light range, and the corresponding color temperature range was 3400 K–3600 K. The results showed that the addition of GeO2 to Dy3+-doped tellurite glass can improve the thermal stability and luminescence performance of the white light-emitting band.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.