Blind infrared spectral deconvolution with discrete Radon transform regularization for biomedical applications

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Hai Liu , Tingting Liu, Li Liu , Qing An, Chengyue Bai, Huiyou Li
{"title":"Blind infrared spectral deconvolution with discrete Radon transform regularization for biomedical applications","authors":"Hai Liu ,&nbsp;Tingting Liu,&nbsp;Li Liu ,&nbsp;Qing An,&nbsp;Chengyue Bai,&nbsp;Huiyou Li","doi":"10.1016/j.infrared.2024.105640","DOIUrl":null,"url":null,"abstract":"<div><div>Infrared spectrum often suffers from the resolution reduction and random noise. This paper proposes a novel blind infrared spectral reconstruction model that integrates total variation constraint and frequency domain transformation. This model aims to achieve an accurate deconvolution model of infrared spectra by making the coefficient distribution of discrete Radon transform (DRT) of overlapping infrared spectra close to high-resolution infrared spectra. Secondly, we use total variation (TV) as a popular effective spectral prior model, which has been applied in regularization based blind deconvolution of infrared spectra because it can preserve small peaks. In this study, the model fully utilizes spatial information from different image regions and proposes an extended split Bregman iteration method to solve the joint minimization problem. Specifically, the DRT coefficient distribution of overlapping infrared spectra should be close to high-resolution infrared spectra. We believe that there are differences between the DRT coefficient distribution of clean spectra and the distribution of degraded infrared spectra. Extensive experimental results have shown that the proposed method outperforms most existing methods in terms of spectral structure quality and quantitative measurement. The high-resolution infrared spectra after deconvolution can be used for biomedical imaging and clinical applications.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"144 ","pages":"Article 105640"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005243","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared spectrum often suffers from the resolution reduction and random noise. This paper proposes a novel blind infrared spectral reconstruction model that integrates total variation constraint and frequency domain transformation. This model aims to achieve an accurate deconvolution model of infrared spectra by making the coefficient distribution of discrete Radon transform (DRT) of overlapping infrared spectra close to high-resolution infrared spectra. Secondly, we use total variation (TV) as a popular effective spectral prior model, which has been applied in regularization based blind deconvolution of infrared spectra because it can preserve small peaks. In this study, the model fully utilizes spatial information from different image regions and proposes an extended split Bregman iteration method to solve the joint minimization problem. Specifically, the DRT coefficient distribution of overlapping infrared spectra should be close to high-resolution infrared spectra. We believe that there are differences between the DRT coefficient distribution of clean spectra and the distribution of degraded infrared spectra. Extensive experimental results have shown that the proposed method outperforms most existing methods in terms of spectral structure quality and quantitative measurement. The high-resolution infrared spectra after deconvolution can be used for biomedical imaging and clinical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信