Mufeedah Muringa Kandy, Thasnim P Mohammed, Akhila George, Muniyandi Sankaralingam
{"title":"Biomimetic methodology as a sustainable tool for enhanced photocatalytic reduction of CO2","authors":"Mufeedah Muringa Kandy, Thasnim P Mohammed, Akhila George, Muniyandi Sankaralingam","doi":"10.1016/j.cattod.2024.115122","DOIUrl":null,"url":null,"abstract":"<div><div>In this current technological world, the unrestrained release of CO<sub>2</sub> negatively impacts the atmosphere by global warming. The capture of CO<sub>2</sub> and converting it into accessible solar fuels is a prominent scientific and technological breakthrough that tackles both the rising climate change and energy crisis issues. The dual beneficial approach focusing on solar-energy-driven reduction of CO<sub>2</sub> to valuable energy fuels is one of the most promising sustainable strategies. In consideration of this, it has been recently observed that biomimetic strategies that incorporate intricate structural design with massive functional components offer a sustainable technological feature. Inspired by the remarkably efficient process of photosynthesis in nature, the fabrication of synthetic leaves for artificial photosynthesis emerges as an attractive avenue that addresses the dual challenges of climate change and energy scarcity with inventive and sustainable methods. This review deals with the fabrication of biomimetic materials with high surface area and efficient charge transfer mechanisms, to improve photocatalytic performance and develop sustainable solutions for CO<sub>2</sub> capture and conversion into solar fuels. The research highlights that the current challenges hinder the advancements of the process from its nascent stage and outlines future research endeavors necessary to elevate it from a rudimentary artificial leaf concept to a commercially viable artificial tree technology with significant industrial value.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"447 ","pages":"Article 115122"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this current technological world, the unrestrained release of CO2 negatively impacts the atmosphere by global warming. The capture of CO2 and converting it into accessible solar fuels is a prominent scientific and technological breakthrough that tackles both the rising climate change and energy crisis issues. The dual beneficial approach focusing on solar-energy-driven reduction of CO2 to valuable energy fuels is one of the most promising sustainable strategies. In consideration of this, it has been recently observed that biomimetic strategies that incorporate intricate structural design with massive functional components offer a sustainable technological feature. Inspired by the remarkably efficient process of photosynthesis in nature, the fabrication of synthetic leaves for artificial photosynthesis emerges as an attractive avenue that addresses the dual challenges of climate change and energy scarcity with inventive and sustainable methods. This review deals with the fabrication of biomimetic materials with high surface area and efficient charge transfer mechanisms, to improve photocatalytic performance and develop sustainable solutions for CO2 capture and conversion into solar fuels. The research highlights that the current challenges hinder the advancements of the process from its nascent stage and outlines future research endeavors necessary to elevate it from a rudimentary artificial leaf concept to a commercially viable artificial tree technology with significant industrial value.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.