Lin Gao , Zixian Jia , Lijiao Qin , Haocheng Sun , Xinwei Zhang , Baozhong Li , Xuehai Wang , Jiquan Liu , Jinbo Bai
{"title":"Using waste to treat waste: Catalysts from spent alkaline batteries for glycolysis of PET waste","authors":"Lin Gao , Zixian Jia , Lijiao Qin , Haocheng Sun , Xinwei Zhang , Baozhong Li , Xuehai Wang , Jiquan Liu , Jinbo Bai","doi":"10.1016/j.cattod.2024.115143","DOIUrl":null,"url":null,"abstract":"<div><div>The recovery of Zn/ZnO nanoparticles from spent alkaline batteries was studied. This catalyst was employed for glycolysis of polyethylene terephthalate (PET) to produce bis(2-hydroxyethyl) terephthalate (BHET). The reaction temperature, catalyst/PET ratio and reaction time were investigated. Under the optimal conditions of 190 ℃ and 2 hours, with a catalyst/PET ratio of 2 %, the PET conversion rate and BHET yield of this process were 99 % and 81 %, respectively. The experimental results show that the catalyst exhibits high catalytic activity, is easy to separate, and has good reusability. In addition, this catalyst can deal effectively with impurities and dyes present in waste PET. Finally glycolysis kinetic studies were conducted on the reaction of PET degradation, and the activation energy of 118.8 kJ·mol<sup>−1</sup> were obtained.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"447 ","pages":"Article 115143"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006370","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The recovery of Zn/ZnO nanoparticles from spent alkaline batteries was studied. This catalyst was employed for glycolysis of polyethylene terephthalate (PET) to produce bis(2-hydroxyethyl) terephthalate (BHET). The reaction temperature, catalyst/PET ratio and reaction time were investigated. Under the optimal conditions of 190 ℃ and 2 hours, with a catalyst/PET ratio of 2 %, the PET conversion rate and BHET yield of this process were 99 % and 81 %, respectively. The experimental results show that the catalyst exhibits high catalytic activity, is easy to separate, and has good reusability. In addition, this catalyst can deal effectively with impurities and dyes present in waste PET. Finally glycolysis kinetic studies were conducted on the reaction of PET degradation, and the activation energy of 118.8 kJ·mol−1 were obtained.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.