Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries

IF 13.1 1区 化学 Q1 Energy
Yirong Xiao , Le Yang , Chaoyuan Zeng , Ze Hua , Shuangquan Qu , Niaz Ahmad , Ruiwen Shao , Wen Yang
{"title":"Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries","authors":"Yirong Xiao ,&nbsp;Le Yang ,&nbsp;Chaoyuan Zeng ,&nbsp;Ze Hua ,&nbsp;Shuangquan Qu ,&nbsp;Niaz Ahmad ,&nbsp;Ruiwen Shao ,&nbsp;Wen Yang","doi":"10.1016/j.jechem.2024.10.051","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials (CAMs), primarily caused by severe volume changes, results in significant stress and strain, causes micro-cracks and interfacial contact loss at potentials &gt; 4.3 V(vs. Li/Li<sup>+</sup>). Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxide-based cathodes during electrochemical cycling. Nonetheless, the origin of electrochemical-mechanical damage remains unclear. Herein, We have developed a multifunctional PEG-based soft buffer layer (SBL) on the surface of carbon black (CB). This layer functions as a percolation network in the single crystal LiNi<sub>0.83</sub>Co<sub>0.07</sub>Mn<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl composite cathode layer, ensuring superior ionic conductivity, reducing void formation and particle cracking, and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries (ASSLBs). High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode. This strain produces lattice stretches, distortions, and curved transition metal oxide layers near the surface, contributing to structural degradation at elevated voltages. Consequently, ASSLBs with a LiNi<sub>0.83</sub>Co<sub>0.07</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode containing LCCB-10 (CB/PEG mass ratio: 100/10) demonstrate a high areal capacity (2.53 mAh g<sup>−1</sup>/0.32 mA g<sup>−1</sup>) and remarkable rate capability (0.58 mAh g<sup>−1</sup> at 1.4 mA g<sup>−1</sup>), with 88% capacity retention over 1000 cycles.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 377-385"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007575","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials (CAMs), primarily caused by severe volume changes, results in significant stress and strain, causes micro-cracks and interfacial contact loss at potentials > 4.3 V(vs. Li/Li+). Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxide-based cathodes during electrochemical cycling. Nonetheless, the origin of electrochemical-mechanical damage remains unclear. Herein, We have developed a multifunctional PEG-based soft buffer layer (SBL) on the surface of carbon black (CB). This layer functions as a percolation network in the single crystal LiNi0.83Co0.07Mn0.1O2 and Li6PS5Cl composite cathode layer, ensuring superior ionic conductivity, reducing void formation and particle cracking, and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries (ASSLBs). High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode. This strain produces lattice stretches, distortions, and curved transition metal oxide layers near the surface, contributing to structural degradation at elevated voltages. Consequently, ASSLBs with a LiNi0.83Co0.07Mn0.1O2 cathode containing LCCB-10 (CB/PEG mass ratio: 100/10) demonstrate a high areal capacity (2.53 mAh g−1/0.32 mA g−1) and remarkable rate capability (0.58 mAh g−1 at 1.4 mA g−1), with 88% capacity retention over 1000 cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信