Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction

IF 13.1 1区 化学 Q1 Energy
Yayin Li , Haomin Jiang , Liu Lin , Zemin Sun , Genban Sun
{"title":"Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction","authors":"Yayin Li ,&nbsp;Haomin Jiang ,&nbsp;Liu Lin ,&nbsp;Zemin Sun ,&nbsp;Genban Sun","doi":"10.1016/j.jechem.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen reduction reaction (ORR) could be effectively regulated by adjusting electron configurations and optimizing chemical bonds. Herein, we have achieved the modulation of electron distribution in Fe single atomic (Fe<sub>SA</sub>) sites through Fe atomic clusters (Fe<sub>AC</sub>) via a confined pyrolysis approach, thereby enhancing their intrinsic ORR activity. X-ray absorption spectroscopy has confirmed that the presence of iron atomic clusters could influence the electron distribution at Fe-N<sub>4</sub> sites. The Fe<sub>SA</sub>/Fe<sub>AC</sub>-NC catalyst exhibits a half-wave potential of 0.88 V, surpassing the individual Fe<sub>SA</sub>-NC structure. Through electronic structure analysis, it could be seen that iron atom clusters can affect Fe-N<sub>4</sub> sites through long-range effects, and then effectively lower reaction barriers and enhance the reaction kinetics at Fe-N<sub>4</sub> sites. The synthetic approach might pave the way for constructing highly active catalysts with tunable atomic structures, representing an effective and universal technique for electron modulation in M-N-C systems. This work provides enlightenment for the exploration of more efficient single-atom electrocatalysts and the optimization of the performance of atomic electrocatalysts. Furthermore, a zinc-air battery assembled using it on their cathode deliver a high peak power density (205.7 mW cm<sup>−2</sup>) and a high-specific capacity of 807.5 mA h g<sup>−1</sup>. This study offers a fresh approach to effectively enhance the synergistic interaction of between Fe single atom and Fe atomic clusters for improving ORR activity and energy storage.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 413-420"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen reduction reaction (ORR) could be effectively regulated by adjusting electron configurations and optimizing chemical bonds. Herein, we have achieved the modulation of electron distribution in Fe single atomic (FeSA) sites through Fe atomic clusters (FeAC) via a confined pyrolysis approach, thereby enhancing their intrinsic ORR activity. X-ray absorption spectroscopy has confirmed that the presence of iron atomic clusters could influence the electron distribution at Fe-N4 sites. The FeSA/FeAC-NC catalyst exhibits a half-wave potential of 0.88 V, surpassing the individual FeSA-NC structure. Through electronic structure analysis, it could be seen that iron atom clusters can affect Fe-N4 sites through long-range effects, and then effectively lower reaction barriers and enhance the reaction kinetics at Fe-N4 sites. The synthetic approach might pave the way for constructing highly active catalysts with tunable atomic structures, representing an effective and universal technique for electron modulation in M-N-C systems. This work provides enlightenment for the exploration of more efficient single-atom electrocatalysts and the optimization of the performance of atomic electrocatalysts. Furthermore, a zinc-air battery assembled using it on their cathode deliver a high peak power density (205.7 mW cm−2) and a high-specific capacity of 807.5 mA h g−1. This study offers a fresh approach to effectively enhance the synergistic interaction of between Fe single atom and Fe atomic clusters for improving ORR activity and energy storage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信