Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Chelo Ferreira , José L. López , Ester Pérez Sinusía
{"title":"Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions","authors":"Chelo Ferreira ,&nbsp;José L. López ,&nbsp;Ester Pérez Sinusía","doi":"10.1016/j.cam.2024.116395","DOIUrl":null,"url":null,"abstract":"<div><div>The integral <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><mi>r</mi><mi>t</mi><mo>)</mo></mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mi>t</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>)</mo></mrow></mrow></mfrac><mi>d</mi><mi>t</mi></mrow></math></span> plays an essential role in the study of several phenomena in the theory of elastodynamics (Ceballos and Prato, 2014). But an exact evaluation of this integral in terms of known functions is not possible. In this paper, we derive an analytic representation of this integral in the form of convergent series of elementary functions and hypergeometric functions. This series have an asymptotic character for either, small values of the variable <span><math><mi>s</mi></math></span>, or for small values of the variables <span><math><mi>r</mi></math></span> and <span><math><mi>R</mi></math></span>. It is derived by using the asymptotic technique designed in Lopez (2008) for Mellin convolution integrals. Some numerical experiments show the accuracy of the approximation supplied by the first few terms of the expansion.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"460 ","pages":"Article 116395"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006435","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The integral 0Jμ(rt)Jν(Rt)tα(ts)dt plays an essential role in the study of several phenomena in the theory of elastodynamics (Ceballos and Prato, 2014). But an exact evaluation of this integral in terms of known functions is not possible. In this paper, we derive an analytic representation of this integral in the form of convergent series of elementary functions and hypergeometric functions. This series have an asymptotic character for either, small values of the variable s, or for small values of the variables r and R. It is derived by using the asymptotic technique designed in Lopez (2008) for Mellin convolution integrals. Some numerical experiments show the accuracy of the approximation supplied by the first few terms of the expansion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信