Zhouyi Xiong , Te Yu , Jiran Lv , Jihui Wang , Xing Fu
{"title":"Chitin nanofiber-stabilized pickering emulsion interacting with egg white protein: Structural features, interfacial properties, and stability","authors":"Zhouyi Xiong , Te Yu , Jiran Lv , Jihui Wang , Xing Fu","doi":"10.1016/j.foodhyd.2024.110866","DOIUrl":null,"url":null,"abstract":"<div><div>The application of chitin has significantly expanded, particularly in the formulation of protein-based complexes stabilized by electrostatic interactions, which are crucial in the development of Pickering emulsions. This study systematically investigates how variations in pH affect the molecular structure, interfacial properties, and emulsifying performance of egg white protein (EWP) complexes with chitin nanofibers (ChNFs). The findings reveal that electrostatic interactions between ChNFs and EWP substantially influence the dispersion and morphology of the complexes across a pH range of 2.0–9.0. Spectral analysis indicates that the incorporation of ChNFs leads to a slight reduction in surface hydrophobicity and fluorescence intensity of EWP, enhancing the protein's structural flexibility. Additionally, adsorption kinetics and dilational viscoelasticity measurements demonstrate that ChNFs significantly increase EWP's equilibrium interfacial pressure (up to 25 mN/m) and viscoelastic modulus, indicating improved stability at the oil-water interface. Notably, emulsions stabilized by EWP/ChNF complexes at pH values between 5.0 and 7.0 exhibit a more uniform droplet size (approximately 200 nm) and enhanced stability, with turbidity measurements reaching maximum values of 0.85. These results underscore the potential of chitin nanofibers as sustainable emulsifiers in food applications, providing a viable alternative to synthetic emulsifiers.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110866"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011408","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The application of chitin has significantly expanded, particularly in the formulation of protein-based complexes stabilized by electrostatic interactions, which are crucial in the development of Pickering emulsions. This study systematically investigates how variations in pH affect the molecular structure, interfacial properties, and emulsifying performance of egg white protein (EWP) complexes with chitin nanofibers (ChNFs). The findings reveal that electrostatic interactions between ChNFs and EWP substantially influence the dispersion and morphology of the complexes across a pH range of 2.0–9.0. Spectral analysis indicates that the incorporation of ChNFs leads to a slight reduction in surface hydrophobicity and fluorescence intensity of EWP, enhancing the protein's structural flexibility. Additionally, adsorption kinetics and dilational viscoelasticity measurements demonstrate that ChNFs significantly increase EWP's equilibrium interfacial pressure (up to 25 mN/m) and viscoelastic modulus, indicating improved stability at the oil-water interface. Notably, emulsions stabilized by EWP/ChNF complexes at pH values between 5.0 and 7.0 exhibit a more uniform droplet size (approximately 200 nm) and enhanced stability, with turbidity measurements reaching maximum values of 0.85. These results underscore the potential of chitin nanofibers as sustainable emulsifiers in food applications, providing a viable alternative to synthetic emulsifiers.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.