Graphdiyne-based molecular active materials and devices for emerging smart applications

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qiang Liu , Mengyu Du , Hyacinthe Randriamahazaka , Wei Chen
{"title":"Graphdiyne-based molecular active materials and devices for emerging smart applications","authors":"Qiang Liu ,&nbsp;Mengyu Du ,&nbsp;Hyacinthe Randriamahazaka ,&nbsp;Wei Chen","doi":"10.1016/j.mser.2024.100889","DOIUrl":null,"url":null,"abstract":"<div><div>Graphdiyne (GDY), as a novel two-dimensional carbon material, showcases immense potential in the field of smart materials due to its intrinsic properties and microstructure. Unlike conventional smart materials, GDY exhibits stimulus-responsive behaviors without the need for external chemical modifications, dopants, or composite materials. Its unique sp/sp<sup>2</sup> hybridized carbon framework, porous structure, and abundance of highly reactive acetylenic linkages, enable this material to directly interact with environmental stimuli and exhibit superior performance across a variety of applications, including muscle-like actuators, wearable sensors, optoelectronic adaptive regulation, low-grade energy harvesting, and cutting-edge biomedical applications. As a new type of smart material, the application potential of GDY in many frontier fields still needs to be fully explored and exploited. The review provides a timely and comprehensive overview of the state-of-the-art in GDY-based smart materials and applications, emphasizing its unique molecular-scale activity and key challenges in synthesis, scalability, stability, and sensitivity. We believe that this article will provide very valuable insights into technological innovation and collaboration in the field of new material and artificial intelligence.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100889"},"PeriodicalIF":31.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24001190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphdiyne (GDY), as a novel two-dimensional carbon material, showcases immense potential in the field of smart materials due to its intrinsic properties and microstructure. Unlike conventional smart materials, GDY exhibits stimulus-responsive behaviors without the need for external chemical modifications, dopants, or composite materials. Its unique sp/sp2 hybridized carbon framework, porous structure, and abundance of highly reactive acetylenic linkages, enable this material to directly interact with environmental stimuli and exhibit superior performance across a variety of applications, including muscle-like actuators, wearable sensors, optoelectronic adaptive regulation, low-grade energy harvesting, and cutting-edge biomedical applications. As a new type of smart material, the application potential of GDY in many frontier fields still needs to be fully explored and exploited. The review provides a timely and comprehensive overview of the state-of-the-art in GDY-based smart materials and applications, emphasizing its unique molecular-scale activity and key challenges in synthesis, scalability, stability, and sensitivity. We believe that this article will provide very valuable insights into technological innovation and collaboration in the field of new material and artificial intelligence.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信