Qiang Liu , Mengyu Du , Hyacinthe Randriamahazaka , Wei Chen
{"title":"Graphdiyne-based molecular active materials and devices for emerging smart applications","authors":"Qiang Liu , Mengyu Du , Hyacinthe Randriamahazaka , Wei Chen","doi":"10.1016/j.mser.2024.100889","DOIUrl":null,"url":null,"abstract":"<div><div>Graphdiyne (GDY), as a novel two-dimensional carbon material, showcases immense potential in the field of smart materials due to its intrinsic properties and microstructure. Unlike conventional smart materials, GDY exhibits stimulus-responsive behaviors without the need for external chemical modifications, dopants, or composite materials. Its unique sp/sp<sup>2</sup> hybridized carbon framework, porous structure, and abundance of highly reactive acetylenic linkages, enable this material to directly interact with environmental stimuli and exhibit superior performance across a variety of applications, including muscle-like actuators, wearable sensors, optoelectronic adaptive regulation, low-grade energy harvesting, and cutting-edge biomedical applications. As a new type of smart material, the application potential of GDY in many frontier fields still needs to be fully explored and exploited. The review provides a timely and comprehensive overview of the state-of-the-art in GDY-based smart materials and applications, emphasizing its unique molecular-scale activity and key challenges in synthesis, scalability, stability, and sensitivity. We believe that this article will provide very valuable insights into technological innovation and collaboration in the field of new material and artificial intelligence.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100889"},"PeriodicalIF":31.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24001190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphdiyne (GDY), as a novel two-dimensional carbon material, showcases immense potential in the field of smart materials due to its intrinsic properties and microstructure. Unlike conventional smart materials, GDY exhibits stimulus-responsive behaviors without the need for external chemical modifications, dopants, or composite materials. Its unique sp/sp2 hybridized carbon framework, porous structure, and abundance of highly reactive acetylenic linkages, enable this material to directly interact with environmental stimuli and exhibit superior performance across a variety of applications, including muscle-like actuators, wearable sensors, optoelectronic adaptive regulation, low-grade energy harvesting, and cutting-edge biomedical applications. As a new type of smart material, the application potential of GDY in many frontier fields still needs to be fully explored and exploited. The review provides a timely and comprehensive overview of the state-of-the-art in GDY-based smart materials and applications, emphasizing its unique molecular-scale activity and key challenges in synthesis, scalability, stability, and sensitivity. We believe that this article will provide very valuable insights into technological innovation and collaboration in the field of new material and artificial intelligence.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.