Zein/EGCG/Ca2+ oleogels for margarine substitution in biscuits: Impact on dough properties and biscuits quality attributes

IF 11 1区 农林科学 Q1 CHEMISTRY, APPLIED
Qiming Wang , Zhenan Rao , Ling Jiang , Xiaojuan Lei , Jichun Zhao , Lin Lei , Kaihong Zeng , Jian Ming
{"title":"Zein/EGCG/Ca2+ oleogels for margarine substitution in biscuits: Impact on dough properties and biscuits quality attributes","authors":"Qiming Wang ,&nbsp;Zhenan Rao ,&nbsp;Ling Jiang ,&nbsp;Xiaojuan Lei ,&nbsp;Jichun Zhao ,&nbsp;Lin Lei ,&nbsp;Kaihong Zeng ,&nbsp;Jian Ming","doi":"10.1016/j.foodhyd.2024.110891","DOIUrl":null,"url":null,"abstract":"<div><div>Biscuits are a popular bakery item among consumers, with solid fats (such as margarines or shortenings) rich in saturated fats being key ingredients. Consuming excessive amounts of these fats could have negative effects on human health. This study investigated the potential of hydrocolloids-based oleogels (Zein/(−)-epigallocatechin-3-gallate/Ca<sup>2+</sup>) as a margarine alternative in bakery items. Oleogels were used at substitution levels of 0%, 25%, 50%, 75%, and 100%. The study evaluated the specific gravity, microstructure, color variation, and flavor of oleogels/margarine doughs and biscuits. Results suggested that when the substitution degree was less than 50%, oleogels exhibited good application potential in biscuits products in terms of mixtures, doughs and biscuits characteristics. The oleogels/margarine mixtures with 25% substitution degree presented more similarity to margarine in appearance, being feather and milky white. The oleogel/margarine doughs at 25% substitution exhibited a specific gravity of 1.238 ± 0.022, closely resembling the margarine control (1.252 ± 0.020). Biscuits with 25% oleogel substitution showed color parameters <em>(L∗</em>, <em>a∗</em>, and <em>b∗</em> values) that were statistically comparable to the margarine biscuits (p &gt; 0.05). When margarine was partially or fully substituted with oleogels in biscuits preparation, it showed potential in slowing the rise of blood sugar and blood lipid levels. Therefore, using oleogels as a substitute for conventional solid fat could be a highly promising strategy. This study might provide references for further exploration into the potential of oleogels in food formulations, promoting a healthier food industry.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110891"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011652","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Biscuits are a popular bakery item among consumers, with solid fats (such as margarines or shortenings) rich in saturated fats being key ingredients. Consuming excessive amounts of these fats could have negative effects on human health. This study investigated the potential of hydrocolloids-based oleogels (Zein/(−)-epigallocatechin-3-gallate/Ca2+) as a margarine alternative in bakery items. Oleogels were used at substitution levels of 0%, 25%, 50%, 75%, and 100%. The study evaluated the specific gravity, microstructure, color variation, and flavor of oleogels/margarine doughs and biscuits. Results suggested that when the substitution degree was less than 50%, oleogels exhibited good application potential in biscuits products in terms of mixtures, doughs and biscuits characteristics. The oleogels/margarine mixtures with 25% substitution degree presented more similarity to margarine in appearance, being feather and milky white. The oleogel/margarine doughs at 25% substitution exhibited a specific gravity of 1.238 ± 0.022, closely resembling the margarine control (1.252 ± 0.020). Biscuits with 25% oleogel substitution showed color parameters (L∗, a∗, and b∗ values) that were statistically comparable to the margarine biscuits (p > 0.05). When margarine was partially or fully substituted with oleogels in biscuits preparation, it showed potential in slowing the rise of blood sugar and blood lipid levels. Therefore, using oleogels as a substitute for conventional solid fat could be a highly promising strategy. This study might provide references for further exploration into the potential of oleogels in food formulations, promoting a healthier food industry.

Abstract Image

玉米蛋白/EGCG/Ca2+油凝胶替代饼干中的人造黄油:对面团性质和饼干质量属性的影响
饼干是一种很受消费者欢迎的烘焙食品,富含饱和脂肪的固体脂肪(如人造黄油或起酥油)是主要成分。过量摄入这些脂肪会对人体健康产生负面影响。本研究探讨了基于水胶体的油凝胶(玉米蛋白/(−)-表没食子儿茶素-3-没食子酸酯/Ca2+)作为烘焙食品中人造黄油替代品的潜力。在0%、25%、50%、75%和100%的替代水平下使用油凝胶。该研究评估了油凝胶/人造黄油面团和饼干的比重、微观结构、颜色变化和风味。结果表明,当取代度小于50%时,油凝胶在混合物、面团和饼干的特性方面具有良好的应用潜力。取代度为25%的油凝胶/人造黄油混合物在外观上与人造黄油更相似,呈羽毛状和乳白色。取代量为25%的油凝胶/人造黄油面团的比重为1.238±0.022,与人造黄油对照(1.252±0.020)非常接近。含有25%油凝胶替代的饼干的颜色参数(L∗,a∗和b∗值)在统计上与人造黄油饼干(p >;0.05)。当人造黄油部分或全部用油凝胶代替饼干时,它显示出减缓血糖和血脂水平上升的潜力。因此,使用油凝胶作为传统固体脂肪的替代品可能是一个非常有前途的策略。本研究可为进一步开发油凝胶在食品配方中的应用潜力,促进食品工业的健康发展提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Hydrocolloids
Food Hydrocolloids 工程技术-食品科技
CiteScore
19.90
自引率
14.00%
发文量
871
审稿时长
37 days
期刊介绍: Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication. The main areas of interest are: -Chemical and physicochemical characterisation Thermal properties including glass transitions and conformational changes- Rheological properties including viscosity, viscoelastic properties and gelation behaviour- The influence on organoleptic properties- Interfacial properties including stabilisation of dispersions, emulsions and foams- Film forming properties with application to edible films and active packaging- Encapsulation and controlled release of active compounds- The influence on health including their role as dietary fibre- Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes- New hydrocolloids and hydrocolloid sources of commercial potential. The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信