Effect of cinnamaldehyde–tannic acid-zinc acetate nanoparticles and aldehyde crosslinking on properties of chitosan films and their application for beef preservation
Chao Qiu , Baicun Chen , Wenqi Yin , David Julian McClements , Zhengyu Jin , Hangyan Ji
{"title":"Effect of cinnamaldehyde–tannic acid-zinc acetate nanoparticles and aldehyde crosslinking on properties of chitosan films and their application for beef preservation","authors":"Chao Qiu , Baicun Chen , Wenqi Yin , David Julian McClements , Zhengyu Jin , Hangyan Ji","doi":"10.1016/j.foodhyd.2024.110881","DOIUrl":null,"url":null,"abstract":"<div><div>Pure chitosan films are relatively fragile and tend to dissolve when they come into contact with water, which limits their application in food preservation. In this study, cinnamaldehyde-tannic acid-zinc acetate (CTZA) nanoparticles and aldehyde crosslinking were used to enhance the mechanical and water barrier properties of chitosan films. Fourier transform infrared spectroscopy and X-ray diffraction analyses showed that cinnamaldehyde had been successfully grafted on the surfaces of chitosan films. The thermal stability and mechanical property of the chitosan films were greatly improved after these modifications. Compared to non-modified films, the tensile strength of modified films increased by about 1.5- and 8.2-fold under dry and wet conditions, respectively. In addition, the moisture content, swelling degree, water solubility, and water vapor permeability of the modified films were all significantly decreased after the aldehyde modification. Interestingly, the modified film showed no significant changes in dimensions after being immersed in water for 24 h. Moreover, the UV-blocking properties and antioxidant activity of the modified films were significantly enhanced. Finally, the modified films extended the shelf life of packaged beef by 5 d. These findings suggest that the modified chitosan films can be used as active packaging materials for food preservation.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110881"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X2401155X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pure chitosan films are relatively fragile and tend to dissolve when they come into contact with water, which limits their application in food preservation. In this study, cinnamaldehyde-tannic acid-zinc acetate (CTZA) nanoparticles and aldehyde crosslinking were used to enhance the mechanical and water barrier properties of chitosan films. Fourier transform infrared spectroscopy and X-ray diffraction analyses showed that cinnamaldehyde had been successfully grafted on the surfaces of chitosan films. The thermal stability and mechanical property of the chitosan films were greatly improved after these modifications. Compared to non-modified films, the tensile strength of modified films increased by about 1.5- and 8.2-fold under dry and wet conditions, respectively. In addition, the moisture content, swelling degree, water solubility, and water vapor permeability of the modified films were all significantly decreased after the aldehyde modification. Interestingly, the modified film showed no significant changes in dimensions after being immersed in water for 24 h. Moreover, the UV-blocking properties and antioxidant activity of the modified films were significantly enhanced. Finally, the modified films extended the shelf life of packaged beef by 5 d. These findings suggest that the modified chitosan films can be used as active packaging materials for food preservation.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.