Zhumin Li , Leyang Xi , Wangyang Xue , Yuehong Zheng , Jiansheng Li , Wei Jiang , Ao Meng , Tong Liu , Luwei Liu , Yu Zhao
{"title":"Unveiling microstructural evolution and its effect on mechanical performance in a Cu-9Ni-6Sn alloy","authors":"Zhumin Li , Leyang Xi , Wangyang Xue , Yuehong Zheng , Jiansheng Li , Wei Jiang , Ao Meng , Tong Liu , Luwei Liu , Yu Zhao","doi":"10.1016/j.vacuum.2024.113864","DOIUrl":null,"url":null,"abstract":"<div><div>Cu-9Ni-6Sn alloy exhibits profoundly potential as a new environmental-friendly conductive elastic material. In this work, the formation and growth mechanism of discontinuous precipitation, as well as its effect on mechanical properties of Cu-9Ni-6Sn alloy are systematically studied. The investigation indicated that the discontinuous precipitation does easily initiate from random grain boundaries but showing opposite result for Σ3 boundaries. The lower frequency Σ3 boundaries relatively, the more intense the solute diffusion, resulting in a higher volume fraction of discontinuous precipitation. The increasing aging temperature and time will accelerate the grain boundary discontinuous reaction, and the fine-grained samples exhibit a higher volume fraction of discontinuous precipitates and smaller lamellar spacing due to the more nucleation sites and increased interfacial energy. The strengthening mechanism of Cu-9Ni-6Sn alloy mainly focus on dislocation strengthening and precipitation strengthening, in which the D0<sub>22</sub> or L1<sub>2</sub>-γ′ phases exhibit more significantly precipitation strengthening effect but is difficult to guarantee ductility. The localized grain boundary discontinuous precipitation detrimentally affect both the tensile strength and ductility.</div><div>But the nano-lamellar discontinuous precipitation is beneficial to the strength-ductility trade off when it occupies the entirely Cu matrix. This work establishes a robust foundation for the microstructural optimization and multi-component design of Cu-9Ni-6Sn alloy.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113864"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009102","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu-9Ni-6Sn alloy exhibits profoundly potential as a new environmental-friendly conductive elastic material. In this work, the formation and growth mechanism of discontinuous precipitation, as well as its effect on mechanical properties of Cu-9Ni-6Sn alloy are systematically studied. The investigation indicated that the discontinuous precipitation does easily initiate from random grain boundaries but showing opposite result for Σ3 boundaries. The lower frequency Σ3 boundaries relatively, the more intense the solute diffusion, resulting in a higher volume fraction of discontinuous precipitation. The increasing aging temperature and time will accelerate the grain boundary discontinuous reaction, and the fine-grained samples exhibit a higher volume fraction of discontinuous precipitates and smaller lamellar spacing due to the more nucleation sites and increased interfacial energy. The strengthening mechanism of Cu-9Ni-6Sn alloy mainly focus on dislocation strengthening and precipitation strengthening, in which the D022 or L12-γ′ phases exhibit more significantly precipitation strengthening effect but is difficult to guarantee ductility. The localized grain boundary discontinuous precipitation detrimentally affect both the tensile strength and ductility.
But the nano-lamellar discontinuous precipitation is beneficial to the strength-ductility trade off when it occupies the entirely Cu matrix. This work establishes a robust foundation for the microstructural optimization and multi-component design of Cu-9Ni-6Sn alloy.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.