Photocurrent and electrical properties of SiGe nanocrystals grown on insulator via solid-state dewetting of Ge/SOI for Photodetection and solar cells applications

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A.K. Aladim , Mansour Aouassa , S. Amdouni , Mohammed Bouabdellaoui , Walter B. Pessoa , Mohammed Ibrahim , K.M.A. Saron , Isabelle Berbezier
{"title":"Photocurrent and electrical properties of SiGe nanocrystals grown on insulator via solid-state dewetting of Ge/SOI for Photodetection and solar cells applications","authors":"A.K. Aladim ,&nbsp;Mansour Aouassa ,&nbsp;S. Amdouni ,&nbsp;Mohammed Bouabdellaoui ,&nbsp;Walter B. Pessoa ,&nbsp;Mohammed Ibrahim ,&nbsp;K.M.A. Saron ,&nbsp;Isabelle Berbezier","doi":"10.1016/j.vacuum.2024.113892","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present the photocurrent and electrical characterization of silicon-germanium nanocrystals (SiGe NCs) on an insulator (SiO<sub>2</sub>). The SiGe NCs were grown through a hybrid process combining solid-phase dewetting of an ultra-thin silicon-on-insulator (UT-SOI) film with the epitaxial deposition of a thin germanium layer using ultra-high vacuum molecular beam epitaxy (UHV-MBE). These SiGe NCs were successfully integrated into the insulator layer of a metal-insulator-semiconductor (MIS) structure for optoelectronic applications. The enhanced MIS structure, featuring integrated SiGe NCs, exhibited notable transport and optoelectric properties as determined by current-voltage and impedance spectroscopy. The results indicated that the MIS structure functions as a Schottky diode, demonstrating a high rectification ratio (RR) of approximately 1000 and a Schottky barrier height (ϕ<sub>B</sub>) of 0.73 eV. Additionally, this structure displayed a broad spectral response in the visible range, with a significant photovoltaic effect. The equivalent circuit of the MIS structure was also derived for an AC signal using impedance spectroscopy. These findings offer a promising scalable method for the monolithic integration and efficient growth of SiGe nanocrystals, paving the way for advancements in self-powered photodetectors and ultrathin solar cells.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113892"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009382","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present the photocurrent and electrical characterization of silicon-germanium nanocrystals (SiGe NCs) on an insulator (SiO2). The SiGe NCs were grown through a hybrid process combining solid-phase dewetting of an ultra-thin silicon-on-insulator (UT-SOI) film with the epitaxial deposition of a thin germanium layer using ultra-high vacuum molecular beam epitaxy (UHV-MBE). These SiGe NCs were successfully integrated into the insulator layer of a metal-insulator-semiconductor (MIS) structure for optoelectronic applications. The enhanced MIS structure, featuring integrated SiGe NCs, exhibited notable transport and optoelectric properties as determined by current-voltage and impedance spectroscopy. The results indicated that the MIS structure functions as a Schottky diode, demonstrating a high rectification ratio (RR) of approximately 1000 and a Schottky barrier height (ϕB) of 0.73 eV. Additionally, this structure displayed a broad spectral response in the visible range, with a significant photovoltaic effect. The equivalent circuit of the MIS structure was also derived for an AC signal using impedance spectroscopy. These findings offer a promising scalable method for the monolithic integration and efficient growth of SiGe nanocrystals, paving the way for advancements in self-powered photodetectors and ultrathin solar cells.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信