Recovery of bioactive compounds from pineapple waste through high-pressure technologies

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Felipe de Andrade Maia, Luiz Henrique Fasolin
{"title":"Recovery of bioactive compounds from pineapple waste through high-pressure technologies","authors":"Felipe de Andrade Maia,&nbsp;Luiz Henrique Fasolin","doi":"10.1016/j.supflu.2024.106455","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to obtain bioactive compounds from the residue from pineapple (<em>Ananas comosus</em> L. Merril) juice processing, using supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE). The SFE were performed using ethanol as a co-solvent and evaluating different pressure, temperature, and co-solvent percentage. For the PLE, temperature and ethanol percentage were assessed. The best extraction conditions for SFE were 20 MPa, 60 °C, and 15 % ethanol, while for PLE they were obtained at 10 MPa, 100 °C with 50 % and 75 % ethanol. Both methods presented a higher concentration of bioactives than other recognized vegetable waste sources. However, it was observed that PLE showed a higher overall extract yield, phenolic compounds, flavonoids, carotenoids, and antioxidant activity. The main phenolic compounds identified were caffeic acid and ferulic acid. Therefore, pineapple residue is a potential source of bioactive compounds, and the pressurized liquid extraction technique proved more efficient for their recovery.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"218 ","pages":"Article 106455"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002900","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to obtain bioactive compounds from the residue from pineapple (Ananas comosus L. Merril) juice processing, using supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE). The SFE were performed using ethanol as a co-solvent and evaluating different pressure, temperature, and co-solvent percentage. For the PLE, temperature and ethanol percentage were assessed. The best extraction conditions for SFE were 20 MPa, 60 °C, and 15 % ethanol, while for PLE they were obtained at 10 MPa, 100 °C with 50 % and 75 % ethanol. Both methods presented a higher concentration of bioactives than other recognized vegetable waste sources. However, it was observed that PLE showed a higher overall extract yield, phenolic compounds, flavonoids, carotenoids, and antioxidant activity. The main phenolic compounds identified were caffeic acid and ferulic acid. Therefore, pineapple residue is a potential source of bioactive compounds, and the pressurized liquid extraction technique proved more efficient for their recovery.
高压技术从菠萝废弃物中回收生物活性化合物
采用超临界流体萃取(SFE)和加压液体萃取(PLE)两种方法对菠萝汁加工残渣进行生物活性化合物的提取。以乙醇为共溶剂进行SFE,并评估不同的压力,温度和共溶剂的百分比。对于PLE,评估温度和乙醇百分比。SFE的最佳提取条件为:20 MPa、60℃、15 %乙醇;PLE的最佳提取条件为:10 MPa、100℃、50 %乙醇、75 %乙醇。两种方法的生物活性浓度均高于其他已知的蔬菜废弃物来源。然而,观察到PLE具有更高的总提取率,酚类化合物,类黄酮,类胡萝卜素和抗氧化活性。鉴定出的主要酚类化合物为咖啡酸和阿魏酸。因此,菠萝渣是生物活性化合物的潜在来源,而加压液体萃取技术对其回收效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信