{"title":"Legendre spectral volume methods for Allen–Cahn equations by the direct discontinuous Galerkin formula","authors":"Chaoyue Guan, Yuli Sun, Jing Niu","doi":"10.1016/j.aml.2024.109382","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce novel class of Legendre spectral volume (LSV) methods for solving Allen–Cahn equations. Each spectral volume (SV) is refined with <span><math><mi>k</mi></math></span> Gauss–Legendre points to define an arbitrary order control volume (CV). Moreover, the second derivative is handled using the direct discontinuous Galerkin (DDG) approach. Furthermore, four numerical experiments are detailed including 1D and 2D Allen–Cahn equations with Neumann and periodic boundary conditions. These experiments demonstrate the stability and accuracy in capturing phase transitions of the approach. Meanwhile, we also show the LSV methods can maintain physical properties such as energy dissipation and uniform boundedness. It is worth mentioning that we observe that the LSV methods achieve both optimal convergence and superconvergence as the numerical flux parameter is carefully selected.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109382"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce novel class of Legendre spectral volume (LSV) methods for solving Allen–Cahn equations. Each spectral volume (SV) is refined with Gauss–Legendre points to define an arbitrary order control volume (CV). Moreover, the second derivative is handled using the direct discontinuous Galerkin (DDG) approach. Furthermore, four numerical experiments are detailed including 1D and 2D Allen–Cahn equations with Neumann and periodic boundary conditions. These experiments demonstrate the stability and accuracy in capturing phase transitions of the approach. Meanwhile, we also show the LSV methods can maintain physical properties such as energy dissipation and uniform boundedness. It is worth mentioning that we observe that the LSV methods achieve both optimal convergence and superconvergence as the numerical flux parameter is carefully selected.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.