Multifunctionality of alkaline phosphatase in ecology and biotechnology

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Daniel E M Saavedra , Federico Baltar
{"title":"Multifunctionality of alkaline phosphatase in ecology and biotechnology","authors":"Daniel E M Saavedra ,&nbsp;Federico Baltar","doi":"10.1016/j.copbio.2024.103229","DOIUrl":null,"url":null,"abstract":"<div><div>Multifunctional enzymes can significantly impact biotechnological applications by performing activities beyond their primary functions. This review explores the role of the multifunctionality of alkaline phosphatase, a key enzyme in the phosphorus cycle, focusing on the molecular mechanisms influencing its activity and its biotechnological potential. We argue that understanding these aspects can enhance the utility of alkaline phosphatase in research and industry, fostering innovations in enzyme engineering, environmental biotechnology, and metabolic engineering. By exploring enzyme promiscuity, we highlight alkaline phosphatase’s versatility, paving the way for advancements in sustainable agriculture, environmental remediation, and clinical diagnostics. Further research will unlock new applications and catalytic efficiencies, driving forward ecological and biotechnological progress.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"91 ","pages":"Article 103229"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001654","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Multifunctional enzymes can significantly impact biotechnological applications by performing activities beyond their primary functions. This review explores the role of the multifunctionality of alkaline phosphatase, a key enzyme in the phosphorus cycle, focusing on the molecular mechanisms influencing its activity and its biotechnological potential. We argue that understanding these aspects can enhance the utility of alkaline phosphatase in research and industry, fostering innovations in enzyme engineering, environmental biotechnology, and metabolic engineering. By exploring enzyme promiscuity, we highlight alkaline phosphatase’s versatility, paving the way for advancements in sustainable agriculture, environmental remediation, and clinical diagnostics. Further research will unlock new applications and catalytic efficiencies, driving forward ecological and biotechnological progress.
碱性磷酸酶在生态与生物技术中的多功能性研究
多功能酶可以通过执行其主要功能之外的活动来显著影响生物技术应用。本文综述了磷循环中的关键酶碱性磷酸酶的多功能性作用,重点介绍了影响其活性的分子机制及其生物技术潜力。我们认为,了解这些方面可以提高碱性磷酸酶在研究和工业中的应用,促进酶工程、环境生物技术和代谢工程的创新。通过探索酶的混杂性,我们强调了碱性磷酸酶的多功能性,为可持续农业、环境修复和临床诊断的进步铺平了道路。进一步的研究将开启新的应用和催化效率,推动生态和生物技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信