Decision support system for sustainable hydrogen production: Case study of Saudi Arabia

IF 4.4 2区 工程技术 Q2 ENERGY & FUELS
Sultan Kaheel , Gasem Fallatah , Patrick Luk , Khalifa Aliyu Ibrahim , Zhenhua Luo
{"title":"Decision support system for sustainable hydrogen production: Case study of Saudi Arabia","authors":"Sultan Kaheel ,&nbsp;Gasem Fallatah ,&nbsp;Patrick Luk ,&nbsp;Khalifa Aliyu Ibrahim ,&nbsp;Zhenhua Luo","doi":"10.1016/j.esd.2024.101603","DOIUrl":null,"url":null,"abstract":"<div><div>The global energy sector is undergoing a transition towards sustainable sources, with hydrogen emerging as a promising alternative due to its high energy content and clean-burning properties. The integration of hydrogen into the energy landscape represents a significant advancement towards a cleaner, greener future. This paper introduces an innovative decision support system (DSS) that combines multi-criteria decision-making (MCDM) and decision tree methodologies to optimize hydrogen production decisions in emerging economies, using Saudi Arabia as a case study. The proposed DSS, developed using MATLAB Web App Designer tools, evaluates various scenarios related to demand and supply, cost and profit margins, policy implications, and environmental impacts, with the goal of balancing economic viability and ecological responsibility. The study's findings highlight the potential of this DSS to guide policymakers and industry stakeholders in making informed, scalable, and flexible hydrogen production decisions that align with sustainable development goals. The novel DSS framework integrates two key influencing factors technical and logistical by considering components such as data management, modeling, analysis, and decision-making. The analysis component employs statistical and economic methods to model and assess the costs and benefits of eleven strategic scenarios, while the decision-making component uses these results to determine the most effective strategies for implementing hydrogen production to minimize risks and uncertainties.</div></div>","PeriodicalId":49209,"journal":{"name":"Energy for Sustainable Development","volume":"84 ","pages":"Article 101603"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy for Sustainable Development","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0973082624002291","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The global energy sector is undergoing a transition towards sustainable sources, with hydrogen emerging as a promising alternative due to its high energy content and clean-burning properties. The integration of hydrogen into the energy landscape represents a significant advancement towards a cleaner, greener future. This paper introduces an innovative decision support system (DSS) that combines multi-criteria decision-making (MCDM) and decision tree methodologies to optimize hydrogen production decisions in emerging economies, using Saudi Arabia as a case study. The proposed DSS, developed using MATLAB Web App Designer tools, evaluates various scenarios related to demand and supply, cost and profit margins, policy implications, and environmental impacts, with the goal of balancing economic viability and ecological responsibility. The study's findings highlight the potential of this DSS to guide policymakers and industry stakeholders in making informed, scalable, and flexible hydrogen production decisions that align with sustainable development goals. The novel DSS framework integrates two key influencing factors technical and logistical by considering components such as data management, modeling, analysis, and decision-making. The analysis component employs statistical and economic methods to model and assess the costs and benefits of eleven strategic scenarios, while the decision-making component uses these results to determine the most effective strategies for implementing hydrogen production to minimize risks and uncertainties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy for Sustainable Development
Energy for Sustainable Development ENERGY & FUELS-ENERGY & FUELS
CiteScore
8.10
自引率
9.10%
发文量
187
审稿时长
6-12 weeks
期刊介绍: Published on behalf of the International Energy Initiative, Energy for Sustainable Development is the journal for decision makers, managers, consultants, policy makers, planners and researchers in both government and non-government organizations. It publishes original research and reviews about energy in developing countries, sustainable development, energy resources, technologies, policies and interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信