Numerical simulation of magnetically driven nanomaterial rotating flow configured by convective-radiative cone with chemical reaction

IF 5.5 Q1 ENGINEERING, CHEMICAL
Cyrus Raza Mirza , Muhammad Salman Kausar , Muhammad Nasir , M. Waqas , Nurnadiah Zamri , Iskandar Shernazarov , S.U. Khan , Nidhal Ben Khedher
{"title":"Numerical simulation of magnetically driven nanomaterial rotating flow configured by convective-radiative cone with chemical reaction","authors":"Cyrus Raza Mirza ,&nbsp;Muhammad Salman Kausar ,&nbsp;Muhammad Nasir ,&nbsp;M. Waqas ,&nbsp;Nurnadiah Zamri ,&nbsp;Iskandar Shernazarov ,&nbsp;S.U. Khan ,&nbsp;Nidhal Ben Khedher","doi":"10.1016/j.ceja.2024.100682","DOIUrl":null,"url":null,"abstract":"<div><div>Indeed, nanoliquids have acquired substantial consideration in heat transference field because of their inimitable thermal attributes and favorable application likelihoods. In contrast to orthodox liquids, the haphazard movement of nanoparticles within nanoliquid strengthens fluid turbulence, accomplishes superior thermal effectiveness and declines thermal resistance. Nanoliquids have ample utilization, for illustration, solar energy, electronic chips, automotive radiators and heat exchangers etc. This communication reports chemically reactive electro-magnetized nanomaterial dissipative flow confined by rotating cone. Flow expressions include thermo-solutal buoyancy, varying viscosity and magneto-hydrodynamics. Radiative heat, thermophoresis, viscous dissipation, Brownian diffusion, thermal source and first order chemical reaction are pondered to model transport expressions. Relevant variables are introduced to transfigure partial differential mathematical expressions to mathematical ordinary ones. Numerical outcomes for non-dimensional mathematical expressions are reported via bvp4c algorithm in MATLAB. The comprehensive results featuring dimensionless quantities are explored through graphs and arithmetic representations. It is evaluated that escalating values of variable viscosity, Prandtl number and unsteady parameter decline temperature but temperature is improved as a consequence of progressive variation in radiation parameter, Eckert number, thermophoresis parameter, heat generating and Brownian diffusive variables. The study is relevant to cooling industry, electroconductive, thermal collector and nano-materials processing.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100682"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Indeed, nanoliquids have acquired substantial consideration in heat transference field because of their inimitable thermal attributes and favorable application likelihoods. In contrast to orthodox liquids, the haphazard movement of nanoparticles within nanoliquid strengthens fluid turbulence, accomplishes superior thermal effectiveness and declines thermal resistance. Nanoliquids have ample utilization, for illustration, solar energy, electronic chips, automotive radiators and heat exchangers etc. This communication reports chemically reactive electro-magnetized nanomaterial dissipative flow confined by rotating cone. Flow expressions include thermo-solutal buoyancy, varying viscosity and magneto-hydrodynamics. Radiative heat, thermophoresis, viscous dissipation, Brownian diffusion, thermal source and first order chemical reaction are pondered to model transport expressions. Relevant variables are introduced to transfigure partial differential mathematical expressions to mathematical ordinary ones. Numerical outcomes for non-dimensional mathematical expressions are reported via bvp4c algorithm in MATLAB. The comprehensive results featuring dimensionless quantities are explored through graphs and arithmetic representations. It is evaluated that escalating values of variable viscosity, Prandtl number and unsteady parameter decline temperature but temperature is improved as a consequence of progressive variation in radiation parameter, Eckert number, thermophoresis parameter, heat generating and Brownian diffusive variables. The study is relevant to cooling industry, electroconductive, thermal collector and nano-materials processing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信