Nondestructive examination of internal defects in cylindrical glass fiber reinforced plastics using dynamic active microwave thermography

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Pouya Faraji Kalajahi, Davood Akbari
{"title":"Nondestructive examination of internal defects in cylindrical glass fiber reinforced plastics using dynamic active microwave thermography","authors":"Pouya Faraji Kalajahi,&nbsp;Davood Akbari","doi":"10.1016/j.ndteint.2024.103281","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the applicability of Dynamic Active Microwave Thermography (DAMT) in nondestructive inspection of GFRP cylindrical shells has been investigated experimentally and numerically. In this regard, Cylindrical GFRP samples were prepared through a filament winding process. Two types of planar and linear defects were created inside the cylindrical samples. Holes and cracks in three different diameters and lengths were engraved on the inner side of the samples. Aiming to create temperature contrast between sound and defected areas a microwave excitation setup comprising a microwave horn antenna, a rotational element, and a Faraday's cage was utilized. Thermal images were captured from the surface of the samples by means of an IR camera. The influences of different parameters including excitation power, heating time, and standoff distance on the temperature contrast were assessed. Besides, in order to examine the electrical field distribution, the interaction of the E-field with the sample, and the temperature distribution on the surface of the sample, the heating process was simulated numerically using the finite element method. The FEM analysis results indicate a proper agreement with the experimental test results.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"150 ","pages":"Article 103281"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002469","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the applicability of Dynamic Active Microwave Thermography (DAMT) in nondestructive inspection of GFRP cylindrical shells has been investigated experimentally and numerically. In this regard, Cylindrical GFRP samples were prepared through a filament winding process. Two types of planar and linear defects were created inside the cylindrical samples. Holes and cracks in three different diameters and lengths were engraved on the inner side of the samples. Aiming to create temperature contrast between sound and defected areas a microwave excitation setup comprising a microwave horn antenna, a rotational element, and a Faraday's cage was utilized. Thermal images were captured from the surface of the samples by means of an IR camera. The influences of different parameters including excitation power, heating time, and standoff distance on the temperature contrast were assessed. Besides, in order to examine the electrical field distribution, the interaction of the E-field with the sample, and the temperature distribution on the surface of the sample, the heating process was simulated numerically using the finite element method. The FEM analysis results indicate a proper agreement with the experimental test results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信