High-precision machine learning for predicting latent heat in diverse multicomponent molten salts

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Xue-meng Wang , Yi-dan Tao , Guan-chen Dong , Shuai-yu Wang , Qi Miao , Hong-liang Ding , Jing Lv , Qiong Wu , Yi Jin , Ling-hua Tan
{"title":"High-precision machine learning for predicting latent heat in diverse multicomponent molten salts","authors":"Xue-meng Wang ,&nbsp;Yi-dan Tao ,&nbsp;Guan-chen Dong ,&nbsp;Shuai-yu Wang ,&nbsp;Qi Miao ,&nbsp;Hong-liang Ding ,&nbsp;Jing Lv ,&nbsp;Qiong Wu ,&nbsp;Yi Jin ,&nbsp;Ling-hua Tan","doi":"10.1016/j.solmat.2024.113328","DOIUrl":null,"url":null,"abstract":"<div><div>Molten salts in phase change materials offer significant advantages, including high thermal storage density, a wide operational temperature range, and low cost. However, the development of novel high-latent-heat molten salts remains largely empirical. Machine learning offers the potential to expedite theoretical advancements and enable precise, cost-efficient performance predictions. Nonetheless, the diversity of molten salt s complicates the accuracy and generalizability of machine learning models. This study proposes a novel latent heat prediction methodology that integrates data analysis and machine learning. A comprehensive dataset encompassing various inorganic salts was systematically analyzed to extract key features influencing latent heat. Subsequently, a predictive model was constructed by combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO). The PSO-BPNN model demonstrated high predictive accuracy, achieving R<sup>2</sup> values of 0.9389 and 0.9413 for binary and ternary molten salts, respectively, with experimental validation indicating prediction errors within 10 %. This approach establishes a high-precision, scalable framework for predicting the latent heat of multicomponent molten salts, thereby advancing the design of salts with tailored thermal properties and offering a valuable reference for predicting other thermophysical characteristics.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"281 ","pages":"Article 113328"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824006408","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Molten salts in phase change materials offer significant advantages, including high thermal storage density, a wide operational temperature range, and low cost. However, the development of novel high-latent-heat molten salts remains largely empirical. Machine learning offers the potential to expedite theoretical advancements and enable precise, cost-efficient performance predictions. Nonetheless, the diversity of molten salt s complicates the accuracy and generalizability of machine learning models. This study proposes a novel latent heat prediction methodology that integrates data analysis and machine learning. A comprehensive dataset encompassing various inorganic salts was systematically analyzed to extract key features influencing latent heat. Subsequently, a predictive model was constructed by combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO). The PSO-BPNN model demonstrated high predictive accuracy, achieving R2 values of 0.9389 and 0.9413 for binary and ternary molten salts, respectively, with experimental validation indicating prediction errors within 10 %. This approach establishes a high-precision, scalable framework for predicting the latent heat of multicomponent molten salts, thereby advancing the design of salts with tailored thermal properties and offering a valuable reference for predicting other thermophysical characteristics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信