Dhruba B. Khadka, Masatoshi Yanagida, Yasuhiro Shirai
{"title":"Assessing degradation in perovskite solar cells via thermal hysteresis of photocurrent and device simulation","authors":"Dhruba B. Khadka, Masatoshi Yanagida, Yasuhiro Shirai","doi":"10.1016/j.solmat.2024.113319","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the degradation mechanisms of perovskite solar cell (PSC) is paramount to addressing stability-related issues. Photocurrent loss is widely observed in the degraded PSC. Here, we investigate the degradation of PSC by probing the thermal hysteresis of photocurrent (THPC) and the dynamics of thermally active ionic or recombination processes. Degraded devices exhibit a considerably higher degree of variation in the photogenerated current, encompassing a broad spectrum of photo-induced ionic charge accumulation. THPC reveals changes driven by the accumulation of interfacial ionic charges and active defects under photo-thermal drifting, as supported by capacitance analysis. Device simulation corroborates that the interfacial surface defect formed at the interfacial layer in the device structure wields a substantial influence on device degradation, particularly in cases of photocurrent loss. This study underscores the direct correlation between the degradation of PSC and the presence of thermally activated traps and interfacial charge accumulation emphasizing the importance of passivating these pathways to improve device stability.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"281 ","pages":"Article 113319"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824006317","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the degradation mechanisms of perovskite solar cell (PSC) is paramount to addressing stability-related issues. Photocurrent loss is widely observed in the degraded PSC. Here, we investigate the degradation of PSC by probing the thermal hysteresis of photocurrent (THPC) and the dynamics of thermally active ionic or recombination processes. Degraded devices exhibit a considerably higher degree of variation in the photogenerated current, encompassing a broad spectrum of photo-induced ionic charge accumulation. THPC reveals changes driven by the accumulation of interfacial ionic charges and active defects under photo-thermal drifting, as supported by capacitance analysis. Device simulation corroborates that the interfacial surface defect formed at the interfacial layer in the device structure wields a substantial influence on device degradation, particularly in cases of photocurrent loss. This study underscores the direct correlation between the degradation of PSC and the presence of thermally activated traps and interfacial charge accumulation emphasizing the importance of passivating these pathways to improve device stability.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.