Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things

IF 3.4 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Munan Li , Liang Wang
{"title":"Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things","authors":"Munan Li ,&nbsp;Liang Wang","doi":"10.1016/j.joi.2024.101616","DOIUrl":null,"url":null,"abstract":"<div><div>With the trends of technology convergence and technology interdisciplinarity, technology-field (TF) resolution and classification of patents have gradually been challenged. Whether for patent applicants or for patent examiners, more precisely labeling the TF for a certain patent is important for technological searches. However, determining the TF of a patent may be difficult and may even involve the strategic behavior of patenting, which can cause noise in patent classification systems (PCSs). In addition, some specific patents could contain more TFs than claimed or be assigned questionable IPC codes; subsequently, in a regular search for technology/patents, information could be missed. Considering the advantages of deep learning compared with traditional machine learning algorithms in areas such as natural language processing (NLP), text classification and text sentiment analysis, this paper investigates several popular deep learning models and proposes a large-scale multilabel regression (MLR) model to handle specific patent analyses under situations of small sample learning. To verify the proposed MLR model for patent classification, the case study on smart cities and industrial Internet of Things (IIoT) is conducted. The MLR experiments on the TF resolution of smart cities and IIoT have yielded moderate results compared with those of the latest patent classification studies, which also rely on deep learning and the large language models (LLMs), which include RCNN, Bi-LSTM, BERT and GPT-4 etc. Therefore, the proposed MLR model with a customized loss function could be moderately effective for patent classification within a specific technology theme, could have implications for patent classification and the TF resolution of patents, and could further enrich methodologies for patent mining and informetrics based on artificial intelligence (AI).</div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"19 1","pages":"Article 101616"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724001287","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the trends of technology convergence and technology interdisciplinarity, technology-field (TF) resolution and classification of patents have gradually been challenged. Whether for patent applicants or for patent examiners, more precisely labeling the TF for a certain patent is important for technological searches. However, determining the TF of a patent may be difficult and may even involve the strategic behavior of patenting, which can cause noise in patent classification systems (PCSs). In addition, some specific patents could contain more TFs than claimed or be assigned questionable IPC codes; subsequently, in a regular search for technology/patents, information could be missed. Considering the advantages of deep learning compared with traditional machine learning algorithms in areas such as natural language processing (NLP), text classification and text sentiment analysis, this paper investigates several popular deep learning models and proposes a large-scale multilabel regression (MLR) model to handle specific patent analyses under situations of small sample learning. To verify the proposed MLR model for patent classification, the case study on smart cities and industrial Internet of Things (IIoT) is conducted. The MLR experiments on the TF resolution of smart cities and IIoT have yielded moderate results compared with those of the latest patent classification studies, which also rely on deep learning and the large language models (LLMs), which include RCNN, Bi-LSTM, BERT and GPT-4 etc. Therefore, the proposed MLR model with a customized loss function could be moderately effective for patent classification within a specific technology theme, could have implications for patent classification and the TF resolution of patents, and could further enrich methodologies for patent mining and informetrics based on artificial intelligence (AI).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信