Xiaofeng Wei, Jiaxin Su, Yuyin Ji, Hongyang Huang, Dalin Li, Huihuang Fang, Chongqi Chen, Yu Luo, Lilong Jiang
{"title":"Hydrotalcite-derived well-dispersed and thermally stable cobalt nanoparticle catalyst for ammonia decomposition","authors":"Xiaofeng Wei, Jiaxin Su, Yuyin Ji, Hongyang Huang, Dalin Li, Huihuang Fang, Chongqi Chen, Yu Luo, Lilong Jiang","doi":"10.1016/j.mcat.2024.114741","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia is a carbon-free hydrogen carrier, and development of non-noble metal catalyst to decompose ammonia into hydrogen is desirable for practical applications. However, the metal catalyst is challenged by the sintering of metal particles under high-temperature reaction conditions. In this study, a series of Li-, Al-, and Co-containing hydrotalcite-like compounds (HTlc) were synthesized by co-precipitation and used as precursors to prepare well-dispersed and thermally stable Co nanoparticle catalysts for ammonia decomposition. The obtained precursors and catalysts were characterized by means of X-ray powder diffraction (XRD), temperature-programmed reduction (H<sub>2</sub>-TPR), X-ray photoelectron spectroscopy (XPS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and so on. All of the precursors formed hydrotalcite-like phase, which consisted of Li–Al–(Co) HTlc and/or Co–Al HTlc dependent on the Co content. Upon calcination at 500 °C, HTlc decomposed into an Al-substituted Co<sub>3</sub>O<sub>4</sub> spinel oxide, as confirmed by two distinctly separated reduction steps in H<sub>2</sub>-TPR. Following reduction at 700 °C, well-dispersed Co metal nanoparticles with an average particle size of ∼9.2–12.4 nm were obtained. It was suggested that the incorporation of Al<sup>3+</sup> into Co<sub>3</sub>O<sub>4</sub> led to a strong interaction between cobalt and aluminum, which suppressed the crystal growth of Co<sub>3</sub>O<sub>4</sub> and the sintering of Co metal during the thermal treatments, resulting in good Co dispersion. The optimal LiAlCo(1.5) catalyst showed superior activity than that prepared by impregnation method, giving almost complete conversion of ammonia at 575 °C under a space velocity of 5,000 mL g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>. More importantly, this catalyst maintained stable activity at 625 °C for 100 h, exhibiting high stability and sintering resistance. The good catalytic performance was attributed to the high Co metal dispersion and strong metal–support interaction benefiting from the uniform distribution of cobalt in the HTlc precursor. These results demonstrate the applicability of HTlc to the preparation of metal catalysts with improved dispersion and thermal stability.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"572 ","pages":"Article 114741"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124009234","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia is a carbon-free hydrogen carrier, and development of non-noble metal catalyst to decompose ammonia into hydrogen is desirable for practical applications. However, the metal catalyst is challenged by the sintering of metal particles under high-temperature reaction conditions. In this study, a series of Li-, Al-, and Co-containing hydrotalcite-like compounds (HTlc) were synthesized by co-precipitation and used as precursors to prepare well-dispersed and thermally stable Co nanoparticle catalysts for ammonia decomposition. The obtained precursors and catalysts were characterized by means of X-ray powder diffraction (XRD), temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and so on. All of the precursors formed hydrotalcite-like phase, which consisted of Li–Al–(Co) HTlc and/or Co–Al HTlc dependent on the Co content. Upon calcination at 500 °C, HTlc decomposed into an Al-substituted Co3O4 spinel oxide, as confirmed by two distinctly separated reduction steps in H2-TPR. Following reduction at 700 °C, well-dispersed Co metal nanoparticles with an average particle size of ∼9.2–12.4 nm were obtained. It was suggested that the incorporation of Al3+ into Co3O4 led to a strong interaction between cobalt and aluminum, which suppressed the crystal growth of Co3O4 and the sintering of Co metal during the thermal treatments, resulting in good Co dispersion. The optimal LiAlCo(1.5) catalyst showed superior activity than that prepared by impregnation method, giving almost complete conversion of ammonia at 575 °C under a space velocity of 5,000 mL gcat–1 h–1. More importantly, this catalyst maintained stable activity at 625 °C for 100 h, exhibiting high stability and sintering resistance. The good catalytic performance was attributed to the high Co metal dispersion and strong metal–support interaction benefiting from the uniform distribution of cobalt in the HTlc precursor. These results demonstrate the applicability of HTlc to the preparation of metal catalysts with improved dispersion and thermal stability.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods