{"title":"Modeling direct and converse flexoelectricity in soft dielectric rods with application to the follower load","authors":"Pushkar Mishra, Prakhar Gupta","doi":"10.1016/j.jmps.2024.105956","DOIUrl":null,"url":null,"abstract":"<div><div>Dielectric rods have been employed in various electromechanical applications, including energy harvesters and sensors. This paper develops a general framework to model large deformations in dielectric rods, considering both direct and converse flexoelectric effects. Initially, we derive the governing differential equations for a three-dimensional dielectric continuum solid to model large deformations, incorporating converse flexoelectricity. Then, we derive the equilibrium equations for the flexoelectric strain-gradient special Cosserat rod. Subsequently, we establish its constitutive relations and identify the corresponding work conjugates. To solve these governing differential equations numerically, we implement a quaternion-based numerical approach and obtain flexoelectricity-based solutions corresponding to the follower load. Moreover using these constitutive relations, we have also obtained nonlinear analytical solutions for bending under the follower load that show an excellent agreement with our numerical results. Bending under the follower load is also compared with the transverse load to understand the electric field generation. Unlike, under the application of the transverse load, where the electric field increases monotonically, for the follower load, the electric field gradually switches its sign. The role of direct and converse flexoelectric coefficients has also been examined, and several interesting conclusions have been drawn. Finally, we analyze the effect of mechanical and electrical length scale parameters. The electromechanical response from the follower load can be utilized to fabricate flexoelectric sensors for nanoelectromechanical systems.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"195 ","pages":"Article 105956"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624004228","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric rods have been employed in various electromechanical applications, including energy harvesters and sensors. This paper develops a general framework to model large deformations in dielectric rods, considering both direct and converse flexoelectric effects. Initially, we derive the governing differential equations for a three-dimensional dielectric continuum solid to model large deformations, incorporating converse flexoelectricity. Then, we derive the equilibrium equations for the flexoelectric strain-gradient special Cosserat rod. Subsequently, we establish its constitutive relations and identify the corresponding work conjugates. To solve these governing differential equations numerically, we implement a quaternion-based numerical approach and obtain flexoelectricity-based solutions corresponding to the follower load. Moreover using these constitutive relations, we have also obtained nonlinear analytical solutions for bending under the follower load that show an excellent agreement with our numerical results. Bending under the follower load is also compared with the transverse load to understand the electric field generation. Unlike, under the application of the transverse load, where the electric field increases monotonically, for the follower load, the electric field gradually switches its sign. The role of direct and converse flexoelectric coefficients has also been examined, and several interesting conclusions have been drawn. Finally, we analyze the effect of mechanical and electrical length scale parameters. The electromechanical response from the follower load can be utilized to fabricate flexoelectric sensors for nanoelectromechanical systems.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.