Sheng Qiu , Yanan Zhao , Kai Wang , Jinbin Luo , Rui Wang , Xinwei Jiang , Jingwei Chen , Abdulhakem Y. Elezzabi , Wu Zhang , Hao Jia , Haizeng Li
{"title":"Inkjet-printing assisted engineering of patternable zinc anode-based electrochromic devices","authors":"Sheng Qiu , Yanan Zhao , Kai Wang , Jinbin Luo , Rui Wang , Xinwei Jiang , Jingwei Chen , Abdulhakem Y. Elezzabi , Wu Zhang , Hao Jia , Haizeng Li","doi":"10.1016/j.matre.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><div>Zn anode-based electrochromic devices (ZECDs) stand out as a highly promising technology in the upcoming era of multifunctional electronic devices, offering a blend of electrochromic capabilities and energy storage functions within a single transparent platform. However, significant challenges persist in achieving efficient patterning, ensuring long-term stability, and fast color-switching kinetics for these devices. In this study, heterogeneous tungsten oxide nanowires (W<sub>17</sub>O<sub>47</sub>/Na<sub>0.1</sub>WO<sub>3</sub>, WNOs) are formulated into inkjet printing ink to assemble patternable ZECDs. The heterogeneous electrode structure of WNO enables a highly capacitive-controlled mechanism that promotes fast electrochromic/electrochemical behavior. Notably, by utilizing a three-dimensional MXene mesh modified substrate, the inkjet-printed ZECDs exhibit a wide optical modulation range of 69.13%, rapid color-changing kinetics (<em>t</em><sub>c</sub> = 4.1 s, <em>t</em><sub>b</sub> = 5.4 s), and highly reversible capacities of 70 mAh cm<sup>−2</sup> over 1000 cycles. This scalable strategy develops the patterned electrodes with a wide optical modulation range and substantial energy storage properties, offering promising prospects for their application in next-generation smart electronics.</div></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 4","pages":"Article 100293"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zn anode-based electrochromic devices (ZECDs) stand out as a highly promising technology in the upcoming era of multifunctional electronic devices, offering a blend of electrochromic capabilities and energy storage functions within a single transparent platform. However, significant challenges persist in achieving efficient patterning, ensuring long-term stability, and fast color-switching kinetics for these devices. In this study, heterogeneous tungsten oxide nanowires (W17O47/Na0.1WO3, WNOs) are formulated into inkjet printing ink to assemble patternable ZECDs. The heterogeneous electrode structure of WNO enables a highly capacitive-controlled mechanism that promotes fast electrochromic/electrochemical behavior. Notably, by utilizing a three-dimensional MXene mesh modified substrate, the inkjet-printed ZECDs exhibit a wide optical modulation range of 69.13%, rapid color-changing kinetics (tc = 4.1 s, tb = 5.4 s), and highly reversible capacities of 70 mAh cm−2 over 1000 cycles. This scalable strategy develops the patterned electrodes with a wide optical modulation range and substantial energy storage properties, offering promising prospects for their application in next-generation smart electronics.