Integrative transcriptomic and metabolomic reveals squalene alleviating the inflammatory response and enhancing immunity of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu)

IF 3.2 2区 农林科学 Q1 FISHERIES
Xiaobo Yan , Simiao Pan , Xiangxiang Suo , Weibin Huang , Tao Li , Shuang Zhang , Yuanzhi Yang , Beiping Tan , Xiaohui Dong
{"title":"Integrative transcriptomic and metabolomic reveals squalene alleviating the inflammatory response and enhancing immunity of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu)","authors":"Xiaobo Yan ,&nbsp;Simiao Pan ,&nbsp;Xiangxiang Suo ,&nbsp;Weibin Huang ,&nbsp;Tao Li ,&nbsp;Shuang Zhang ,&nbsp;Yuanzhi Yang ,&nbsp;Beiping Tan ,&nbsp;Xiaohui Dong","doi":"10.1016/j.aqrep.2024.102524","DOIUrl":null,"url":null,"abstract":"<div><div>Our previous study on plant oil substitution for fish oil found that corn oil induced inflammatory responses in grouper, while olive oil was effective in anti-inflammatory and immune enhancing. As a vital active ingredient in olive oil, squalene has been widely studied for its antioxidant and anti-inflammatory properties. Therefore, the present study was designed to use corn oil as the main lipid source to create a model of inflammation or low immunity and investigate the regulatory effect of squalene on the immunity of grouper, and to perform hepatic transcriptomic and metabolomic assays of grouper using omics technology, with the aim of providing basic data for the study of the mechanism of squalene. The results showed: squalene ingestion did not affect the growth performance of grouper (<em>P</em> &gt; 0.05) but significantly improved immunity and the resistance of grouper to <em>Vibrio harveyi</em> (<em>P</em> &lt; 0.05). Transcriptomic and metabolomic analyses showed that squalene activated the Wnt/β-Catenin signaling pathway and PI3K-Akt signaling pathway. Western blot results showed that squalene ingestion significantly upregulated Wnt/β-Catenin protein expression and downregulated the Axin protein expression (<em>P</em> &lt; 0.05). Above results demonstrated that squalene enhanced immunity and disease resistance in grouper may be related to the activation of PI3K-Akt/ Wnt/β-Catenin signaling pathway, while the activation of β-Catenin could reduce the inflammatory response by inhibiting NF-κB-mediated inflammatory factors. The findings will contribute to the application of squalene as an immune enhancer for aquaculture and medical industry.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"40 ","pages":"Article 102524"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513424006124","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous study on plant oil substitution for fish oil found that corn oil induced inflammatory responses in grouper, while olive oil was effective in anti-inflammatory and immune enhancing. As a vital active ingredient in olive oil, squalene has been widely studied for its antioxidant and anti-inflammatory properties. Therefore, the present study was designed to use corn oil as the main lipid source to create a model of inflammation or low immunity and investigate the regulatory effect of squalene on the immunity of grouper, and to perform hepatic transcriptomic and metabolomic assays of grouper using omics technology, with the aim of providing basic data for the study of the mechanism of squalene. The results showed: squalene ingestion did not affect the growth performance of grouper (P > 0.05) but significantly improved immunity and the resistance of grouper to Vibrio harveyi (P < 0.05). Transcriptomic and metabolomic analyses showed that squalene activated the Wnt/β-Catenin signaling pathway and PI3K-Akt signaling pathway. Western blot results showed that squalene ingestion significantly upregulated Wnt/β-Catenin protein expression and downregulated the Axin protein expression (P < 0.05). Above results demonstrated that squalene enhanced immunity and disease resistance in grouper may be related to the activation of PI3K-Akt/ Wnt/β-Catenin signaling pathway, while the activation of β-Catenin could reduce the inflammatory response by inhibiting NF-κB-mediated inflammatory factors. The findings will contribute to the application of squalene as an immune enhancer for aquaculture and medical industry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquaculture Reports
Aquaculture Reports Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍: Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信